福田のおもしろ数学545〜最大公約数と最小公倍数の商で定まる数列 - 質問解決D.B.(データベース)

福田のおもしろ数学545〜最大公約数と最小公倍数の商で定まる数列

問題文全文(内容文):

自然数の列$\{a_n\}$が次の性質を満たしている。

$a_n=\dfrac{Icm(a_{n-1},a_{n-2})}{gcd(a_{n-1},a_{n-2})} \quad (n\geqq 2)$

$a_{560}=560,a_{1600}=1600$のとき

$a_{2025}$を求めて下さい。
    
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

自然数の列$\{a_n\}$が次の性質を満たしている。

$a_n=\dfrac{Icm(a_{n-1},a_{n-2})}{gcd(a_{n-1},a_{n-2})} \quad (n\geqq 2)$

$a_{560}=560,a_{1600}=1600$のとき

$a_{2025}$を求めて下さい。
    
投稿日:2025.06.30

<関連動画>

数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。

(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。

(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
初項3、交差$p$の等差数列を$\left\{a_n\right\}$とし、初項3、公比$r$の等比数列を$\left\{b_n\right\}$と
する。ただし、$p \ne 0$かつ$r \ne 0$とする。さらに、これらの数列が次を満たすとする。
$a_nb_{n+1}-2a_{n+1}b_n+3b_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$①

(1)$p$と$r$の値を求めよう。自然数$n$について、$a_n,a_{n+1},b_n$はそれぞれ
$a_n=\boxed{\ \ ア\ \ }+(n-1)p$ $\cdots$②
$a_{n+1}=\boxed{\ \ ア\ \ }+np$ $\cdots$③
$b_n=\boxed{\ \ イ\ \ }r^{n-1}$
と表される。$r \ne 0$により、すべての自然数$n$について、$b_n \ne 0$となる。
$\displaystyle \frac{b_{n+1}}{b_n}=r$であることから、①の両辺を$b_n$で割ることにより
$\boxed{\ \ ウ\ \ }a_{n+1}=r\left(a_n+\boxed{\ \ エ\ \ }\right)$ $\cdots$④
が成り立つことが分かる。④に②と③を代入すると
$\left(r-\boxed{\ \ オ\ \ }\right)pn=r\left(p-\boxed{\ \ カ\ \ }\right)$$+\boxed{\ \ キ\ \ }$ $\cdots$⑤
となる。⑤が全ての$n$で成り立つことおよび$p \ne 0$により、$r=\boxed{\ \ オ\ \ }$を得る。
さらに、このことから、$p=\boxed{\ \ ク\ \ }$を得る。
以上から、すべての自然数$n$について、$a_n$と$b_n$が正であることもわかる。

(2)$p=\boxed{\ \ ク\ \ },$ $r=\boxed{\ \ オ\ \ }$であるから、$\left\{a_n\right\},$ $\left\{b_n\right\}$の初項から第$n$項
までの和は、それぞれ次の式で与えられる。
$\sum_{k=1}^na_k=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}n\left(n+\boxed{\ \ サ\ \ }\right)$
$\sum_{k=1}^nb_k$$=\boxed{\ \ シ\ \ }\left(\boxed{\ \ オ\ \ }^n-\boxed{\ \ ス\ \ }\right)$

(3)数列$\left\{a_n\right\}$に対して、初項3の数列$\left\{c_n\right\}$が次を満たすとする。
$a_nc_{n+1}-4a_{n+1}c_n+3c_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑥
$a_n$が正であることから、⑥を変形して、$c_{n+1}=\displaystyle \frac{\boxed{\ \ セ\ \ }a_{n+1}}{a_n+\boxed{\ \ ソ\ \ }}c_n$を得る。
さらに、$p=\boxed{\ \ ク\ \ }$であることから、数列$\left\{c_n\right\}$は$\boxed{\boxed{\ \ タ\ \ }}$ことがわかる。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
⓪すべての項が同じ値をとる数列である
①公差が0でない等差数列である
②公比が1より大きい等比数列である
③公比が1より小さい等比数列である
④等差数列でも等比数列でもない

(4)$q,u$は定数で$q \ne 0$とする。数列$\left\{b_n\right\}$に対して、初項3の数列$\left\{d_n\right\}$が
次を満たすとする。
$d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑦
$r=\boxed{\ \ オ\ \ }$であることから、⑦を変形して、$d_{n+1}=\displaystyle \frac{\boxed{\ \ チ\ \ }}{q}(d_n+u)$
を得る。したがって、数列$\left\{d_n\right\}$が、公比が0より大きく1より小さい
等比数列となるための必要十分条件は、$q \gt \boxed{\ \ ツ\ \ }$かつ$u=\boxed{\ \ テ\ \ }$
である。

2021共通テスト過去問
この動画を見る 

福田の数学〜北里大学2021年医学部第2問〜条件が複雑な重複順列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。

2021北里大学医学部過去問
この動画を見る 

これの説明できますか?

アイキャッチ画像
単元: #数列#漸化式#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1-1-+1-1-+1-1...
解説動画です
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
整数からなる数列$\{a_n\}~(n=1,2,3,\cdots)$を次の規則1、規則2により定める。
(規則1)$a_1=0,a_2=1$である。
(規則2)$k=1,2,3,\cdots$について、初項から第$2^k$項までの値のそれぞれに$1$を加え、それらすべてを逆の順序にしたものが第$(2^k+1)$項から第$2^{k+1}$項までの値と定める。
例えば、初項と第2項までのそれぞれに$1$を加えて順序を逆にすると$2,1$を得る。これより、初項から第4項までは$0,1,2,1$となる。同様に、これらのそれぞれに$1$を加えて順序を逆にすると$2,3,2,1$となる。これより、初項から第8項までは$0,1,2,1,2,3,2,1$となる。
(1) 以上の規則により得られる数列$\{a_n\}$において、$a_{10}=\boxed{ア}$であり、$a_{16}=\boxed{イ}$である。また第$2^k$項$(k=5,6,7,\cdots)$の値は$\boxed{ウ}$である。

(2) $a_{518}$を求めたい。上記の規則2によれば、$1 \leqq i \leqq 2^k$を満たす$i$に対して$a_1$に$1$を加えた数と第$\boxed{エ}$項が等しいと定めている。実際に、$2^b < 518 < 2^{b+1}$を満たすような整数$b$は$\boxed{オ}$であることに注意すれば、$a_{518}=\boxed{カ}$である。
エの解答群
⓪ $2^k+i-1$ ① $2^k+i$ ② $2^k+i+1$ ③$2^k+2i$ ④ $2^k+2i+1$
⑤ $2^k-i-1$ ⑥ $2^{k+1}-i$ ⑦ $2^{k+1}-i+1$ ⑧ $2^{k+1}-2i-1$ ⑨ $2^{k+1}-2i$

(3) 点$\textrm{P}_k (k=1,2,3,\cdots)$を次のように定める。
数列$\{a_n\}$の初項から第$2^k$項に着目し、$a_n$を4で割った余りにしたがって、ベクトル$\vec{e_n}$を
\begin{eqnarray}
\vec{e_n}
=
\begin{cases}
(1,0) & a_nが4の倍数のとき \\
(0,1) & a_nを4で割った余りが1のとき\\
(-1,0) & a_nを4で割った余りが2のとき\\
(0,-1) & a_nを4で割った余りが3のとき
\end{cases}
\end{eqnarray}
によって定め、点$\textrm{P}_1$の位置ベクトルを$\overrightarrow{\textrm{OP}_1}=\vec{e_1}+\vec{e_2}$とし、点$\textrm{P}_k (k=2,3,4,\cdots)$の位置ベクトルを$\overrightarrow{\textrm{OP}_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+\cdots+\vec{e_{2^k}}$とする。たとえば、$\overrightarrow{\textrm{OP}_1}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)$である。$\{a_n\}$を定める規則に注目すると、$|\overrightarrow{\textrm{OP}_{k+1}}|$は$|\overrightarrow{\textrm{OP}_{k}}|$の$\boxed{キ}$倍であり、$\angle{\textrm{P}_k\textrm{OP}_{k+1}}=\boxed{ク}$である。このことから$\overrightarrow{\textrm{OP}_{99}}$は$(\boxed{ケ},\boxed{コ})$である。
キの解答群
⓪ $\dfrac18$ ① $\dfrac14$ ② $\dfrac12$ ③ $\dfrac{\sqrt{2}}2$ ④ $1$
⑤ $\sqrt2$ ⑥ $2$ ⑦ $2\sqrt2$ ⑧ $4$ ⑨ $8$
クの解答群
⓪ $15^{\circ}$ ① $30^{\circ}$ ② $45^{\circ}$ ③ $60^{\circ}$ ④ $75^{\circ}$
⑤ $90^{\circ}$ ⑥ $105^{\circ}$ ⑦ $120^{\circ}$ ⑧ $135^{\circ}$ ⑨ $150^{\circ}$
ケ、コの解答群
⓪ $-2^{99}$ ① $-2^{98}$ ② $-2^{49}$ ③ $-2^{48}$ ④ $0$
⑤ $1$ ⑥ $2^{48}$ ⑦ $2^{49}$ ⑧ $2^{98}$ ⑨ $2^{99}$
この動画を見る 
PAGE TOP