問題文全文(内容文):
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
投稿日:2025.07.05





