問題文全文(内容文):
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
投稿日:2025.08.04





