π<3 .3 示せ(類)浜松医科大学2022 - 質問解決D.B.(データベース)

π<3 .3 示せ(類)浜松医科大学2022

問題文全文(内容文):
$ \pi<3.3を示せ.$
単元: #式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \pi<3.3を示せ.$
投稿日:2023.01.02

<関連動画>

福田の数学〜東京慈恵会医科大学2022年医学部第3問〜約数と倍数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mは3以上の奇数とし、mの全ての正の約数をa_1,a_2,\ldots,a_kと並べる。\\
ただし、a_1 \lt a_2 \lt \ldots \lt a_kとする。\\
以下の2つの条件(\textrm{i}),(\textrm{ii})を満たすmについて考える。\\
(\textrm{i})mは素数ではない。\\
(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt kを満たす全ての整数i,jについてa_j-a_i \leqq 3が\\
成り立つ。\\
このとき、次の問いに答えよ。\\
(1)kは3または4であることを示し、mをa_2を用いて表せ。\\
(2)k=3となるとき、全ての正の整数nについて(a_2n+1)^{a_2}-1は\\
mの倍数であることを示せ。
\end{eqnarray}
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
(x-10)(x-a)+1=(x+a)(x+c)$
この動画を見る 

【数Ⅱ】式と証明:分数式の基本

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
(x²-y²)/{x²-(y-z)²} × {(x-y)²-z²}/(x²-xy) ÷ (x²+2xy+y²)/(x²+xy-xz)
この動画を見る 

【数Ⅱ】「少なくとも1つが1」「すべてが1」を等式で証明する。【主張を言い換える】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ a+b+c=1,ab+bc+ca=abcが成り立つとき,
a,b,cのうち少なくとも1つは1であることを示せ.$
この動画を見る 

【数Ⅱ】式と証明:分数式の基本2

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の分数式を約分せよ。(a³-a²b+ab²)/(a³+b³)
この動画を見る 
PAGE TOP