福田の数学〜千葉大学2024年理系第6問〜最小値と方程式の解と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2024年理系第6問〜最小値と方程式の解と回転体の体積

問題文全文(内容文):
関数 $f(x)=e^x+e^{-2x}$ について、次の問いに答えよ。
$(1)$ 関数 $f(x)$ の最小値を求めよ。
$(2)$ $f(x)=2$ となる $x$ の値をすべて求めよ。
$(3)$ $(2)$ で求めた $x$ の値のうち最小のものを $a_1$ 、最大のものを $a_2$ とする。 $y=f(x)$ のグラフ、 $x$ 軸、直線 $x=a_1$、直線 $x=a_2$ で囲まれる図形を $x$ 軸の周りに $1$ 回転してできる立体の体積を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)=e^x+e^{-2x}$ について、次の問いに答えよ。
$(1)$ 関数 $f(x)$ の最小値を求めよ。
$(2)$ $f(x)=2$ となる $x$ の値をすべて求めよ。
$(3)$ $(2)$ で求めた $x$ の値のうち最小のものを $a_1$ 、最大のものを $a_2$ とする。 $y=f(x)$ のグラフ、 $x$ 軸、直線 $x=a_1$、直線 $x=a_2$ で囲まれる図形を $x$ 軸の周りに $1$ 回転してできる立体の体積を求めよ。
投稿日:2024.07.27

<関連動画>

09奈良県教員採用試験(数学:4番 積分)

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
4⃣ $a_n = 1+ \frac{1}{2}+ \frac{1}{3}+ \cdots + \frac{1}{n} - logn$
(1)$a_n>0$を示せ。
(2)$\displaystyle \lim_{ n \to \infty } a_n $が存在することを示せ。
この動画を見る 

大学入試問題#776「シグマの気持ち」 横浜国立大学(1996)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to +\infty } \displaystyle \frac{1}{n}log\{\displaystyle \frac{n}{n}・\displaystyle \frac{n+2}{n}・\displaystyle \frac{n+4}{n}・・・\displaystyle \frac{n+2(n-1)}{n}\}$

出典:1996年横浜国立大学
この動画を見る 

12大阪府教員採用試験(数学:2番 微分積分)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2⃣
(1)$x \geqq 1$, $e^x >x^2$を示せ
(2)$\displaystyle \lim_{ x \to \infty } \int_1^x t e^{-t} dt$
この動画を見る 

【数Ⅲ-147】積分特訓②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分特訓➁)

①$\int\frac{1}{e^x-e^{-x}}dx$

➁$\int\frac{e^x-e^{-x}}{e^x+e^{-x}}dx$

③$\int\cos^5xdx$
この動画を見る 

重積分④-1【積分順序の変更】(高専数学 微積II,数学検定1級解析)

単元: #数Ⅱ#積分とその応用#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$

(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
この動画を見る 
PAGE TOP