【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
チャプター:

0:00 問題と方針
1:01 (1)の解説
3:29 (2)の解説

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
投稿日:2025.12.04

<関連動画>

中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る 

慶応義塾大 4次方程式

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^4-4x^3-12x^2-k=0$が相異なる4つの実数解をもつ$k$の範囲
そのときの4つの解のうち最大のものを$\alpha$とする。
$\alpha$の範囲を求めよ

出典:1989年慶應義塾大学 過去問
この動画を見る 

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
この動画を見る 

中学からの極限(発展編)~全国入試問題解法 #shorts #数学 #極限 #頭の体操

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
この動画を見る 

【高校数学】 数Ⅲ-53 分数関数の決定

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y=\dfrac{ax+b}{x+c}$のグラフが点$(2,1)$を通り、
2直線$x=3,y=-2$を漸近線とするとき、定数$a,b,c$の値を求めよ。
この動画を見る 
PAGE TOP