【高校数学】漸化式の問題演習~基本問題~ 3-17.5【数学B】 - 質問解決D.B.(データベース)

【高校数学】漸化式の問題演習~基本問題~ 3-17.5【数学B】

問題文全文(内容文):
問1
次の条件によって定められる数列$\{an\}$の一般項を求めよ。

(1)$a_{1} = 0,a_{n+1}=a_n +2n+1$

(2)$a_{1}=1,a_{n+1} =a_n +3$

(3)$a_{1} = 2,a_{n+1}=-2a_n$

(4)$a_1=1, a_{n + 1}-a_n+2\cdot 3^{n-1}$
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
問1
次の条件によって定められる数列$\{an\}$の一般項を求めよ。

(1)$a_{1} = 0,a_{n+1}=a_n +2n+1$

(2)$a_{1}=1,a_{n+1} =a_n +3$

(3)$a_{1} = 2,a_{n+1}=-2a_n$

(4)$a_1=1, a_{n + 1}-a_n+2\cdot 3^{n-1}$
投稿日:2025.09.03

<関連動画>

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 

【高校数学】隣接三項間の漸化式の特性方程式の意味~分かりやすく丁寧に~ 3-19.5【数学B】

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
隣接三項間の漸化式の特性方程式の意味を解説していきます。
この動画を見る 

ヨビノリたくみ 東大 非典型的な漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 
PAGE TOP