問題文全文(内容文):
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
チャプター:
0:00 問題と方針
1:11 解説
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
投稿日:2026.02.07





