√の中に8がいっぱい!! - 質問解決D.B.(データベース)

√の中に8がいっぱい!!

問題文全文(内容文):
$\sqrt{8\sqrt{8\sqrt8}}=2$
単元: #数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{8\sqrt{8\sqrt8}}=2$
投稿日:2024.07.31

<関連動画>

円周角の定理のなぜ?

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)
指導講師: 数学を数楽に
問題文全文(内容文):
円周角の定理
成り立つのはなぜ?
*図は動画内参照
この動画を見る 

京大の三角関数!18度系の三角比はどう扱う? #Shorts #ずんだもん #勉強 #数学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由を付けて判定せよ。
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第2問〜絶対値の付いた関数の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a\lt b \lt c$を満たす実数の定数に対して、

すべての実数を定義域とする$x$の関数

$f(x)=\vert x-a \vert + \vert x-b \vert + \vert x-c \vert $を定める。

このとき、$5x+4f(x)$の最小値は

$\boxed{ク}a + \boxed{ケ}b + \boxed{コ}c$である。

また、$f(x)$の最小値が$20$で、

$f(c)=28$かつ$f(10)=31$を満たす$a$の値は

$\boxed{サ}$と$\boxed{シ}$である。

ただし、$\boxed{サ} \lt \boxed{シ}$とする。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

【数Ⅰ】【数と式】式の展開2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
展開せよ
${(a+1)}^3$    ${(x+3y)}^3$
${(2a-1)}^3$    ${(-3a+2b)}^3$

展開せよ
$(a+5)(a^2-5a+25)$     $(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$  $(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$      $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b) $     ${(2x-y)}^3{(2x+y)}^3$
${(a+b)}^2{(a-b)}^2{(a+ab+b)}^2{(a-ab+b)}^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
${(a+b+c)}^2+{(a+b-c)}^2+{(b+c-a)}^2+{(c+a-b)}^2$
この動画を見る 

データの分析 データが変更されたときの平均、分散の関係【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
この動画を見る 
PAGE TOP