【約数の個数】N個の約数を持つ整数について考えよう【早稲田大学】【数学 入試問題】 - 質問解決D.B.(データベース)

【約数の個数】N個の約数を持つ整数について考えよう【早稲田大学】【数学 入試問題】

問題文全文(内容文):
正の約数の個数が28個の最小の自然数は?
チャプター:

00:00 導入部分
00:38 約数の個数について簡単に復習
01:56 解答・解説

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の約数の個数が28個の最小の自然数は?
投稿日:2024.12.26

<関連動画>

高専数学 微積II #11 級数の和

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
級数
$\displaystyle \sum_{n=1}^{\infty}\dfrac{1}{n^2+3n+2}$
の和を求めよ.
この動画を見る 

kとk+1ということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ

京都大過去問
この動画を見る 

123123‥‥123の中には2021の倍数が必ずある

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$123123・・・・・・123$のように$123$が繰り返し並ぶ数の中には必ず$2021$の倍数があることを示せ.
この動画を見る 

整数問題 中級

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 8^n+47$は素数か?
この動画を見る 

素数になる2次式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る 
PAGE TOP