数学「大学入試良問集」【19−16 x軸・y軸回転体の体積の求め方】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−16 x軸・y軸回転体の体積の求め方】を宇宙一わかりやすく

問題文全文(内容文):
双曲線$x^2-\displaystyle \frac{y^2}{3}=1$と$2$直線$y=3,y=-3$で囲まれた部分を、$x$軸、$y$軸のまわりに1回転してできる立体の体積を、それぞれ$V_1,V_2$とする。
$\displaystyle \frac{V_1}{V_2}$を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#富山県立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
双曲線$x^2-\displaystyle \frac{y^2}{3}=1$と$2$直線$y=3,y=-3$で囲まれた部分を、$x$軸、$y$軸のまわりに1回転してできる立体の体積を、それぞれ$V_1,V_2$とする。
$\displaystyle \frac{V_1}{V_2}$を求めよ。
投稿日:2021.09.17

<関連動画>

大学入試問題#319 電気通信大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty }\displaystyle \int_{0}^{a}\displaystyle \frac{1}{1+e^x}dx$

出典:2010年電気通信大学 入試問題
この動画を見る 

大学入試問題#799「もう詰んでます!」 #大阪公立大学(2024) #定積分 #King_property

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#大阪公立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{\sqrt{ 3 }} \displaystyle \frac{log(1+x^2)}{1+e^x} dx$

出典:2024年大阪公立大学
この動画を見る 

大学入試問題#914「コメントむずい」 #学習院大学2023 #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#学習院大学
指導講師: ますただ
問題文全文(内容文):
$f(0)=0$
$f'(x)+\displaystyle \int_{0}^{1} f(t) dt=2e^{2x}-e^x$
を満たす関数$f(x)$を求めよ。

出典:2023年学習院大学
この動画を見る 

【誘導有:概要欄】大学入試問題#238 首都大学東京(2012) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
実数$x$に対して定積分$f(x)=\displaystyle \int_{0}^{1}t\ \sin(x+\pi t)dt$を求めよ。

(2)
関数$f(x)$の最大値を求めよ。

出典:2012年首都大学東京 入試問題
この動画を見る 

福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る 
PAGE TOP