2直線の交点の位置ベクトル(3通りの説明) - 質問解決D.B.(データベース)

2直線の交点の位置ベクトル(3通りの説明)

問題文全文(内容文):
$\overrightarrow{ OA }=\vec{ a },\overrightarrow{ OB }=\vec{ b }$のとき
$\overrightarrow{ OP }$を$\vec{ a },\vec{ b }$で表せ。
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$\overrightarrow{ OA }=\vec{ a },\overrightarrow{ OB }=\vec{ b }$のとき
$\overrightarrow{ OP }$を$\vec{ a },\vec{ b }$で表せ。
投稿日:2019.12.29

<関連動画>

【数B】ベクトル:ベクトルの基本⑥内積の基本計算2 成分を用いて計算する

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
この動画を見る 

【数C】平面ベクトル:単位ベクトルって何??公式がよくわからない!そんな疑問が1分半で解決♪

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
a→=(3,2)と同じ向きの単位ベクトルを求めなさい。
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(3)〜垂線の足の位置ベクトル

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#平面上のベクトル#三角形の辺の比(内分・外分・二等分線)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、$AB=5,\ AC=6$、角Aの大きさは$\frac{\pi}{3}$であるとする。
Aから辺BCに垂線AHを下ろす。このとき$BH:CH=\boxed{ウ}:\boxed{エ}$である。

2022立教大学理学部過去問
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$
空間の2点OとAは$|\overrightarrow{ OA }|=2$を満たすとし、点Aを通り$\overrightarrow{ OA }$に直交する平面をHとする。
平面H上の三角形ABCは、正の実数aに対し
$|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2$
を満たすとする。ただし、$\overrightarrow{ u }・\overrightarrow{ v }$はベクトル$\overrightarrow{ u }$と$\overrightarrow{ v }$の内積を表す。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }$の値を求めよ。
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。
(2)ベクトル$\overrightarrow{ OP }$を、実数$\alpha,\beta,\gamma$を用いて
$\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }$と表すとき、
$\alpha,\beta,\gamma$の値をそれぞれ求めよ。
(3)空間の点Qは$2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }$を満たすとする。直線PQが、
点Oを中心とする半径2の球Sに接しているとき、$|\overrightarrow{ AP }|$の値および$a$の値を求めよ。
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、
$\triangle APR$の面積を求めよ。

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP