慶應(類)積分 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

慶應(類)積分 Mathematics Japanese university entrance exam

問題文全文(内容文):
$f(x)=3\displaystyle \int_{x-1}^{ x }(t+|t|)(t+|t|-1)dt$

(1)
$y=f(x)$のグラフをかけ

(2)
$y=f(x)$と$x$軸とで囲まれる面積を求めよ

出典:慶應義塾 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=3\displaystyle \int_{x-1}^{ x }(t+|t|)(t+|t|-1)dt$

(1)
$y=f(x)$のグラフをかけ

(2)
$y=f(x)$と$x$軸とで囲まれる面積を求めよ

出典:慶應義塾 過去問
投稿日:2019.04.19

<関連動画>

08三重県教員採用試験(数学:8番 区分求積法)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\left(\dfrac{1}{\sqrt{n(n+1)}}+\dfrac{1}{\sqrt{n(n+2)}}+・・・・・・\dfrac{1}{\sqrt{n(n+n)}}\right)$
を計算せよ.
この動画を見る 

大学入試問題#904「解き方いろいろ」 #お茶の水女子大学(2013) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#お茶の水女子大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$で
$f(x)+\displaystyle \int_{1}^{x} \displaystyle \frac{f(t)}{t}dt=3x^2-2x$を満たす多項式$f(x)$を求めよ。

出典:2013年お茶の水女子大学
この動画を見る 

#高専_3#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (e^x-e^{-x})^2(e^x+e^{-x}) dx$
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第3問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$実数$k \gt 0$ に対して、関数$A(k)=\int_0^2|x^2-kx|dx$とすると

$A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}
(0 \lt k \lt \boxed{\ \ サシ\ \ })

\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}(\boxed{\ \ サシ\ \ } \leqq k)
\end{array}
\right.$
となる。この関数A(k)が最小となるのは$k=\sqrt{\boxed{\ \ テト\ \ }}$のときで、そのときの
A(k)の値は$\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}$

2022慶應義塾大学総合政策学部過去問
この動画を見る 

区分求積法とは? #Shorts #高校積分 #毎日積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
区分求積法に関して解説していきます.
この動画を見る 
PAGE TOP