16和歌山県教員採用試験(数学:4番 複素数) - 質問解決D.B.(データベース)

16和歌山県教員採用試験(数学:4番 複素数)

問題文全文(内容文):
$\boxed{4}$
複素数$z=x+yi$が
$1\leqq z+\dfrac{1}{z}\leqq 6$
を満たすとき,
$z$に存在範囲を複素数平面上に図示せよ.
$x,y$は実数とする.
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
複素数$z=x+yi$が
$1\leqq z+\dfrac{1}{z}\leqq 6$
を満たすとき,
$z$に存在範囲を複素数平面上に図示せよ.
$x,y$は実数とする.
投稿日:2021.06.16

<関連動画>

福田の数学〜京都大学2025理系第1問(1)〜複素数の絶対値の取り得る値の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$i$は虚数単位とする。

複素数$z$が、

絶対値が$2$である複素数全体を動くとき、

$\left \vert z-\dfrac{i}{z}\right \vert$

の最大値と最小値を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

大阪市立大 複素数・整数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を自然数とする.
$\omega=a-b\sqrt5 i$
$z=c-d\sqrt5 i$
$-\omega z=11+8\sqrt5 i$

$(a,b,c,d)$をすべて求めよ.

2021大阪市立大過去問
この動画を見る 

滋賀大 複素数 数列 漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n,b_n$整数
$(3+2i)^n=a_n+b_ni$
$a_n,b_n$の一般項を求めよ

出典:滋賀大学 過去問
この動画を見る 

日本医科大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{\pi}{7}$ $z=\cos\theta+i \sin\theta$

(1)
$\cos\theta,\cos2\theta,\cos3\theta$を$z$で表せ

(2)
$\cos\theta・\cos2\theta・\cos3\theta$

(3)
$\cos\theta+\cos3\theta+\cos5\theta$の値を求めよ

出典:日本医科大学 過去問
この動画を見る 

学習院大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{Z-1-3i}{Z-2}$が純虚数であるような複素数$Z$について
$\vert Z \vert$の最大・最小を求めよ。

出典:2003年学習院大学 過去問
この動画を見る 
PAGE TOP