減点注意!?満点を取れた人はたぶん少ない問題【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

減点注意!?満点を取れた人はたぶん少ない問題【京都大学】【数学 入試問題】

問題文全文(内容文):
$a_1=2,a_{n+1}=2a_n-1$
で定められる数列$an$がある

$a_n^2-2a_n>10^{15}$
を満たす最小の自然数nを求めよ

京都大入試問題過去問
チャプター:

00:04 問題文
01:01 (1)解答・解説
02:15 (2)解答・解説

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a_1=2,a_{n+1}=2a_n-1$
で定められる数列$an$がある

$a_n^2-2a_n>10^{15}$
を満たす最小の自然数nを求めよ

京都大入試問題過去問
投稿日:2023.12.06

<関連動画>

福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
この動画を見る 

浜松医大 確率 サイコロ4個・n個 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
 また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
この動画を見る 

広島大 微分積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$C:f(x)=x^3-4x^2+5x$
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
この動画を見る 

平方根 津田塾大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nで$\sqrt{n^2-n+20}$の整数部分がnとなるのは全部でいくつ?(n:自然数)

津田塾大学
この動画を見る 

福田の数学〜立教大学2022年理学部第3問〜接線法線と囲まれた部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$t$を正の実数とする。座標平面上に放物線$C_1:y=x^2$とその上の点$P(t,\ t^2)$がある。
Pにおける$C_1$の接線を$l$とし、法線を$m$とする。$l$とx軸との交点をQとする。
Pにおいて$l$に接し、さらにx軸にも接する円で、中心のx座標がt以下であるものを$C_2$
とする。$C_2$の中心をAとし、$C_2$とx軸の接点をBとする。
(1)lの方程式を求めよ。
(2)mの方程式を求めよ。
(3)$\angle BAP=\frac{\pi}{3}$であるとき、tの値を求めよ。
(4)(3)のとき、Aの座標を求めよ。
(5)(3)のとき、四角形ABQPの面積を求めよ。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP