岡山県立大 複素数 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

岡山県立大 複素数 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$  n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$  n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
投稿日:2018.09.11

<関連動画>

福田のおもしろ数学408〜変数が素数である連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
pq=r+1 \\
2(p^2+q^2)=r^2+1
\end{array}
\right.
\end{eqnarray}$

を満たす素数$p,q,r$を求めて下さい。
この動画を見る 

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 

群馬大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#複素数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\displaystyle \frac{\sqrt{ 3 }-1}{2}+\displaystyle \frac{\sqrt{ 3 }+1}{2}i$

(1)
$\displaystyle \frac{z}{1+i}$を$a+bi$の形で表せ

(2)
$z$を極形式で表せ

(3)
$z^{12}$を求めよ

出典:2004年国立大学法人群馬大学 過去問
この動画を見る 

【高校数学あるある】二項定理と1の3乗根ωの融合問題 #Shorts

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^2+x+1=0$の解の一つを$\omega$とするとき

${}_9 \mathrm{ C }_0+{}_9 \mathrm{ C }_1\omega+{}_9 \mathrm{ C }_2\omega+……+{}_9 \mathrm{ C }_9\omega^9$の値を求めよ。
この動画を見る 

07和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z_0=2$
$z=\displaystyle \frac{1}{2}(\cos\displaystyle \frac{\pi}{3}+i\ \sin\displaystyle \frac{\pi}{3})$
$z_n=z\ z_{n-1}$
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n|z_{k+1}-z_k|$を求めよ。

出典:和歌山県教員採用試験
この動画を見る 
PAGE TOP