図形の性質 図形の性質の基本②【中学受験のドラえもんがていねいに解説】 - 質問解決D.B.(データベース)

図形の性質 図形の性質の基本②【中学受験のドラえもんがていねいに解説】

問題文全文(内容文):
三角形ABCの内心をIとし、3辺BC、CA、ABに関してIと対称な点をそれぞれP,Q,Rとする。Iは三角形PQRについてどのような点か?
三角形ABCの内心をI、角Aの内部の傍心をI₁とする時、次の問いに答えよ。
(1)角IBI₁の大きさを求めよ。
(2)三角形ABCの外接円は線分II₁を二等分することを証明せよ。
AB=ACである二等辺三角形ABCの頂点Aから辺BCに下ろした垂線をADとする。
角Bの内部の傍接円IBの半径はADに等しいことを証明せよ。
チャプター:

0:04 1
1:31 2
5:28 3

単元: #数A#図形の性質#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCの内心をIとし、3辺BC、CA、ABに関してIと対称な点をそれぞれP,Q,Rとする。Iは三角形PQRについてどのような点か?
三角形ABCの内心をI、角Aの内部の傍心をI₁とする時、次の問いに答えよ。
(1)角IBI₁の大きさを求めよ。
(2)三角形ABCの外接円は線分II₁を二等分することを証明せよ。
AB=ACである二等辺三角形ABCの頂点Aから辺BCに下ろした垂線をADとする。
角Bの内部の傍接円IBの半径はADに等しいことを証明せよ。
投稿日:2023.05.03

<関連動画>

場合の数  慶應義塾2021

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#場合の数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1~20の自然数から異なる4つを選び、小さい順にa,b,c,dとする。
c=8のときa,b,dの選び方は何通り?

2021慶應義塾高等学校
この動画を見る 

福田のわかった数学〜高校1年生076〜場合の数(15)道順(2)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(15) 道順(2)
AからBへの最短経路のうち2点C,Dを通らない経路は何通りあるか。
(※図は動画参照)
この動画を見る 

福田の数学〜九州大学2023年文系第2問〜2直線のなす角と外接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xy平面上の曲線C:$y$=$x^3$-$x$ を考える。変数$t$>0に対して、曲線C上の点A($t$, $t^3$-$t$)における接線を$l$とする。直線$l$と直線$y$=-$x$の交点をB、三角形OABの外接円の中心をPとする。以下の問いに答えよ。
(1)点Bの座標を$t$を用いて表せ。
(2)θ=$\angle$OBAとする。$\sin^2\theta$を$t$を用いて表せ。
(3)$f(t)$=$\frac{OP}{OA}$とする。$t$>0のとき、$f(t)$を最小にする$t$の値と$f(t)$の最小値を求めよ。

2023九州大学文系過去問
この動画を見る 

【高校数学】 数A-39 傍心と傍接円

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
三角形の1つの①の①と,他の2つの頂点における
②の②は1点で交わる.この点を傍心という.

③$\triangle ABC$の頂点$A$における内角の二等分線と直線$B,C$
それぞれにおける外角の二等分線は1点で交わることを証明しよう.

図は動画内参照
この動画を見る 

福田のおもしろ数学422〜10変数の不定方程式の解の個数

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a_i (i=1,2,\cdots ,10)$はすべて整数であり、

$ \vert a_1 \vert \leqq 1$かつ

${a_1}^2+{a_2}^2+\cdots + {a_{10}}^2 $

$\quad \quad -a_1a_2-a_2a_3-\cdots a_{10}a_1=2$

を満たしている。

このような$(a_1,a_2,a_3,\cdots a_{10})$は何組あるか?
   
この動画を見る 
PAGE TOP