一橋大 整数問題 Japanese university entrance exam questions - 質問解決D.B.(データベース)

一橋大 整数問題 Japanese university entrance exam questions

問題文全文(内容文):
一橋大学過去問題
(1)$n^3+1$が3で割り切れるnをすべて求めよ。
(2)$n^n+1$が3で割り切れるnをすべて求めよ。
(1)(2)ともにnは自然数
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学過去問題
(1)$n^3+1$が3で割り切れるnをすべて求めよ。
(2)$n^n+1$が3で割り切れるnをすべて求めよ。
(1)(2)ともにnは自然数
投稿日:2018.06.18

<関連動画>

アジア太平洋数学オリンピックのナイスな整数問題

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数である.
$a^2+b+c,a+b^2+c,a+b+c^2$
この3つのすべてが平方数になることはないことを示せ.

アジア太平洋数学オリンピック過去問
この動画を見る 

福田の数学〜約数の個数を返す関数の性質〜北里大学2023年医学部第1問(4)〜約数の個数と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 4 )正の整数 N に対して、の正の約数の個数を(い)とする。例えば、12の正の約数は 1 , 2 , 3 , 4 , 6 , 12 の 6 個であるから、$f(12)= 6$である。
(i)$f(5040)=\fbox{シ}$である。
(ii)$f(k)=15$を満たす正の整数$k$のうち、 2 番目に小さいものは$\fbox{ス}$である。
(iii)大小2つのサイコロを投げるとき、出る目の積を$l$とおく。$f(l)=4$となる確率は$\fbox{セ}$である。
(iv)正の整数mとnは互いに素で、等式$f(mn)=3f(m)+5f(n)-13$を満たすとする。このとき、$mn$を最小にする$m$と$n$の組$(m,n)$は$\fbox{ソ}$である。

2023杏林大学医過去問
この動画を見る 

整数問題 基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る 

連続する五つの整数から一つ除く

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連続する5つの整数がある。そのうち1つを除いた4つの整数の和は2017となる。
除いた数を求めよ。
明治大学付属明治高等学校
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(p-1)!+1$は$p$の倍数であることを示せ.
この動画を見る 
PAGE TOP