04神奈川県教員採用試験(数学:1番 整数問題) - 質問解決D.B.(データベース)

04神奈川県教員採用試験(数学:1番 整数問題)

問題文全文(内容文):
1⃣$x,y \in \mathbb{N}$ , $1 \leqq x, y \leqq 9$
$\frac{10+x}{10x+y} = \frac{1}{y}$
をみたす組(x,y)を全て求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$x,y \in \mathbb{N}$ , $1 \leqq x, y \leqq 9$
$\frac{10+x}{10x+y} = \frac{1}{y}$
をみたす組(x,y)を全て求めよ。
投稿日:2020.11.19

<関連動画>

一橋大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$自然数
$3p^3-p^2q-pq^2+3q^3=2013$を満たす$(p,q)$すべて求めよ

出典:一橋大学 過去問
この動画を見る 

16京都府教員採用試験(数学:5番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
5⃣ $\frac{1}{2015} , \frac{2}{2015} , \cdots , \frac{2014}{2015},\frac{2015}{2015}$のうち既約分数の個数を求めよ。
この動画を見る 

徳島大(医)整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$n^2(n^2+8)$の正の約数が$10$個である$n$をすべて求めよ.

2019徳島大(医)
この動画を見る 

数検準1級2次過去問【2020年12月】5番:整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$boxed{5}$ $m,n\in IN$とする.

(1)$100!=2^m \times (奇数)$と表したときの$m$の値を求めよ.
(2)$50!=n^2\times (互いに異なる素数の積)$と表したときの
素因数分解した形で表せ.
この動画を見る 

開成高校 整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
A,B(A<B)は自然数で最大公約数が$g(\neq1)$で最小公倍数がl
$A^2+B^2+g^2+l^2 = 1300$を満たすA,Bを求めよ
この動画を見る 
PAGE TOP