【数Ⅱ】指数関数・対数関数:大小比較① 次の各組の数の大小を不等号を用いて表せ。(1)2の1/2乗, 4の1/4乗, 8の1/8乗 - 質問解決D.B.(データベース)

【数Ⅱ】指数関数・対数関数:大小比較① 次の各組の数の大小を不等号を用いて表せ。(1)2の1/2乗, 4の1/4乗, 8の1/8乗

問題文全文(内容文):
次の各組の数の大小を不等号を用いて表せ。
(1)$2$の$\dfrac{1}{2}$乗,$4$の$\dfrac{1}{4}$乗,$8$の$\dfrac{1}{8}$乗
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各組の数の大小を不等号を用いて表せ。
(1)$2$の$\dfrac{1}{2}$乗,$4$の$\dfrac{1}{4}$乗,$8$の$\dfrac{1}{8}$乗
投稿日:2020.09.24

<関連動画>

指数の計算!!

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$7^8 = a$ , $8^7 = b$
$56^{56}$をa,bで表せ。
この動画を見る 

ベトナム数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
この動画を見る 

解はあれだけですか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
xは正の実数である.
$3^x+3^{\frac{1}{x}}=6$
これを解け.
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}

2022東北大学理系過去問
この動画を見る 

素数判定

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$30^{17}+17^{30}$は素数か.
この動画を見る 
PAGE TOP