福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
投稿日:2018.08.02

<関連動画>

京都大 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n+(1-i)^n \gt 10^{10}$をみたす最小の自然数$n$を求めよ.
$0.3 \lt \log_{10}2 \lt 0.302$

京大過去問
この動画を見る 

ナイスな連立4元三次方程式

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=30 \\\
b+acd=30 \\
c+abd=30 \\
d+abc=30
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 

同志社大 三次方程式の基本問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
同志社大学過去問題
3次方程式
$2x^3+3x^2-12x-6m=0$
は相異なる3つの実数解
$\alpha,\beta,γ(\alpha\lt\beta\lt γ)$をもつ
①$m$の範囲
②$γ$の範囲
この動画を見る 

京都大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x(x-3)(x+3)+3k(x-1)(x+1)=0$ $(k \gt 0)$

(1)
3つの実数解をもつことを示せ

(2)
ただ1つの正の解が$1$と$1+\displaystyle \frac{2}{k}$の間にあることを示せ

出典:1967年京都大学 過去問
この動画を見る 

ゆる言語学者が無限に聞いていられる素数のお話

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数に関して解説していきます.
この動画を見る 
PAGE TOP