福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。\\
また、各辺の長さは、PQ=1, QR=8, RS=4, SP=7であり、\\
角Pの大きさを\thetaとする。ただし、0 \lt \theta \lt \piとする。\\
このとき円Cの直径は\ \boxed{\ \ イ\ \ },\cos\theta=\boxed{\ \ ウ\ \ } である。
\end{eqnarray}

2021立教大学経済学部過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。\\
また、各辺の長さは、PQ=1, QR=8, RS=4, SP=7であり、\\
角Pの大きさを\thetaとする。ただし、0 \lt \theta \lt \piとする。\\
このとき円Cの直径は\ \boxed{\ \ イ\ \ },\cos\theta=\boxed{\ \ ウ\ \ } である。
\end{eqnarray}

2021立教大学経済学部過去問
投稿日:2021.10.11

<関連動画>

福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}

2021慶應義塾大学薬学部過去問
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第1問〜対数関数と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1] (1)$\log_{10}10=\boxed{\ \ ア\ \ }$である。また、$\log_{10}5,\log_{10}15$をそれぞれ
$\log_{10}2と\log_{10}3$を用いて表すと
$\log_{10}5=\boxed{\ \ イ\ \ }\log_{10}2+\boxed{\ \ ウ\ \ }$
$\log_{10}15=\boxed{\ \ エ\ \ }\log_{10}2+\log_{10}3+\boxed{\ \ オ\ \ }$
(2)太郎さんと花子さんは、$15^{20}$について話している。
以下では、$\log_{10}2=0.3010、\log_{10}3=0.4771$とする。

太郎:$15^{20}$は何桁の数だろう。
花子:$15$の20乗を求めるのは大変だね。$\log_{10}15^{20}$の整数部分に
着目してみようよ。

$\log_{10}15^{20}$は
$\boxed{\ \ カキ\ \ } \lt \log_{10}15^{20} \lt \boxed{\ \ カキ\ \ }+1$
を満たす。よって、$15^{20}は\boxed{\ \ クケ\ \ }$桁の数である。

太郎:$15^{20}$の最高位の数字も知りたいね。だけど、$\log_{10}15^{20}$の
整数部分にだけ着目してもわからないな。
花子:$N・10^{\boxed{カキ}} \lt 15^{20} \lt (N+1)・10^{\boxed{カキ}}$を満たすような
正の整数Nに着目してみたらどうかな。

$\log_{10}15^{20}$の小数部分は$\log_{10}15^{20}-\boxed{\ \ カキ\ \ }$であり
$\log_{10}\boxed{\ \ コ\ \ } \lt \log_{10}15^{20}-\boxed{\ \ カキ\ \ } \lt \log_{10}(\boxed{\ \ コ\ \ }+1)$
が成り立つので、$15^{20}$の最高位の数字は$\boxed{\ \ サ\ \ }$である。


[2]座標平面上の原点を中心とする半径1の円周上に3点$P(\cos\theta,\sin\theta),$
$Q(\cos\alpha,\sin\alpha),R(\cos\beta,\sin\beta)$がある。ただし、$0 \leqq \theta \lt \alpha \lt \beta \lt 2\pi$
とする。このとき、$s$と$t$を次のように定める。
$s=\cos\theta+\cos\alpha+\cos\beta, t=\sin\theta+\sin\alpha+\sin\beta$

(1)$\triangle PQR$が正三角形や二等辺三角形のときの$s$と$t$の値について考察しよう。
考察$1:\triangle PQR$が正三角形である場合を考える。
この場合、$\alpha,\beta$を$\theta$で表すと
$\alpha=\theta+\displaystyle \frac{\boxed{\ \ シ\ \ }}{3}\pi, \beta=\theta+\displaystyle \frac{\boxed{\ \ ス\ \ }}{3}\pi$
であり、加法定理により
$\cos\alpha=\boxed{\boxed{\ \ セ\ \ }}, \sin\alpha=\boxed{\boxed{\ \ ソ\ \ }}$
である。同様に、$\cos\beta$および$\sin\beta$を、$\sin\theta$と$\cos\theta$を用いて表すことができる。
これらのことから、$s=t=\boxed{\ \ タ\ \ }$である。

$\boxed{\boxed{\ \ セ\ \ }},\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
①$\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$
④$-\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
⑤$-\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$-\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$-\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$

考察2:$\triangle PQR$が$PQ=PR$となる二等辺三角形である場合を考える。

例えば、点$P$が直線$y=x$上にあり、点$Q,R$が直線$y=x$に関して対称
であるときを考える。このとき、$\theta=\displaystyle \frac{\pi}{4}$である。また、$\alpha$は
$\alpha \lt \displaystyle \frac{5}{4}\pi, \beta$は$\displaystyle \frac{5}{4}\pi \lt \beta$を満たし、点$Q,R$の座標について、
$\sin\beta=\cos\alpha, \cos\beta=\sin\alpha$が成り立つ。よって
$s=t=\displaystyle \frac{\sqrt{\boxed{\ \ チ\ \ }}}{\boxed{\ \ ツ\ \ }}+\sin\alpha+\cos\alpha$
である。
ここで、三角関数の合成により
$\sin\alpha+\cos\alpha=\sqrt{\boxed{\ \ テ\ \ }}\sin\left(\alpha+\displaystyle \frac{\pi}{\boxed{\ \ ト\ \ }}\right)$
である。したがって

$\alpha=\displaystyle \frac{\boxed{\ \ ナニ\ \ }}{12}\pi, \beta=\displaystyle \frac{\boxed{\ \ ヌネ\ \ }}{12}\pi$

のとき、$s=t=0$である。

(2)次に、$s$と$t$の値を定めるときの$\theta,\alpha,\beta$の関係について考察しよう。
考察$3:s=t=0$の場合を考える。

この場合、$\sin^2\theta+\cos^2\theta=1$により、$\alpha$と$\beta$について考えると
$\cos\alpha\cos\beta+\sin\alpha\sin\beta=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
である。
同様に、$\theta$と$\alpha$について考えると
$\cos\theta\cos\alpha+\sin\theta\sin\alpha=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
であるから、$\theta,\alpha,\beta$の範囲に注意すると
$\beta-\alpha=\alpha-\theta=\displaystyle \frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\pi$
という関係が得られる。

(3)これまでの考察を振り返ると、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ ホ\ \ }}$であることが分かる。
$\boxed{\boxed{\ \ ホ\ \ }}$の解答群
⓪$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$ならば
$\triangle PQR$は正三角形である。
①$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$で
あっても$\triangle PQR$は正三角形でない場合がある。
②$\triangle PQR$が正三角形であっても$s=t=0$でない場合があるが
$s=t=0$ならば$\triangle PQR$は正三角形である。
③$\triangle PQR$が正三角形であっても$s=t=0$でない場合があり、
$s=t=0$であっても$\triangle PQR$が正三角形でない場合がある。
この動画を見る 

京大の標準的な問題!三角関数の知識だけで解けます【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ f(\theta)=cos4\theta-4sin^2\theta$とする。$0≦\theta≦\dfrac{3\pi}{4}$における$f(\theta)$の最大値および最小値を求めよ。

京都大過去問
この動画を見る 

信州大 三角関数・微分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?

出典:2004年国立大学法人信州大学 過去問
この動画を見る 

東大医学部ベテランちが5浪TAWASHIに早稲田の数学の問題を解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
東大医学部のベテランちさんが、TAWASHIさんに早稲田大学の数学入試を解説します。

問題の解き方を理解しましょう!
この動画を見る 
PAGE TOP