【数Ⅲ】【積分とその応用】断面積の図形の体積2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】断面積の図形の体積2 ※問題文は概要欄

問題文全文(内容文):
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
チャプター:

0:00 オープニング
0:05 解説
2:44 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
投稿日:2024.12.15

<関連動画>

大学入試問題#360「もっとスマートな解答がありそう・・・」 宮崎大学2014 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
01x3+3x2x2+3x+2dx

出典:2014年宮崎大学
この動画を見る 

福田の数学〜九州大学2022年理系第4問〜定積分の定義から性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
区間axbで連続な関数f(x)に対してF(x)=f(x)となるF(x)を1つ選び、
f(x)のaからbまでの定積分を
abf(x)dx=F(b)F(a)         
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)ab{kf(x)+lg(x)}dx=kabf(x)dx+labg(x)dx
(B)acbのとき、acf(x)dx+cbf(x)dx=abf(x)dx
(C)区間axbにおいてg(x)h(x)ならば、abg(x)dxabh(x)dx
ただし、f(x),g(x),h(x)は区間axbで連続な関数、k,lは定数である。
以下、f(x)を区間0x1で連続な増加関数とし、
nを自然数とする。定積分の性質    を用い、定数関数に対する定積分の計算を行うと、
1nf(i1n)i1ninf(x)dx1nf(in)  (i=1,2,,n)     
が成り立つことがわかる。Sn=1ni=1nf(i1n)とおくと、
不等式②と定積分の性質    より次の不等式が成り立つ。
001f(x)dxSnf(1)f(0)n     
よって、はさみうちの原理よりlimnSn=01f(x)dxが成り立つ。

(1)関数F(x),G(x)が微分可能であるとき、{F(x)+G(x)}=F(x)+G(x)
成り立つことを、導関数の定義に従って示せ。
また、この等式と定積分の定義①を用いて、性質(A)でk=l=1とした場合の等式
ab{f(x)+g(x)}dx=abf(x)dx+abg(x)dx を示せ。
(2)定積分の定義①と平均値の定理を用いて、次を示せ。
a<bのとき、区間axbにおいてg(x)>0ならば、abg(x)dx>0
(3)(A),(B),(C)のうち、空欄    に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄    に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題096〜早稲田大学2020年度理工学部第3問〜水の問題

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
3 曲線 x=g(y)のy≧0の部分とx軸上の線分0≦x≦g(0)のなす曲線をCとし、Cをy軸のまわりに1回転してできる容器をVとする。ただし、g(y)はy≧0で定義された正の関数とする。Vに毎秒一定量vの水を注ぐとする。t秒後のV内の水位をy=h(t)とするとき、以下の問に答えよ。
(1)水位が一定の速さで上昇するとき、g(y)は定数関数であることを示せ。
(2)g(y)=eyのとき、h(t)を求めよ。

2020早稲田大学理工学部過去問
この動画を見る 

大学入試問題#175 名古屋工業大学2020 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
012x3x2+5x2+1 dxを計算せよ。

出典:2020年名古屋工業大学 入試問題
この動画を見る 

積分の基本問題

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
y=x(x2)2y=kx(0<k<4)とで囲まれる2つの部分の面積が等しい.k=◻を求めよ.

愛知学院大(薬,歯)過去問
この動画を見る 
PAGE TOP preload imagepreload image