【数学B】群数列を【3分】でマスターする動画(共通テスト対策) - 質問解決D.B.(データベース)

【数学B】群数列を【3分】でマスターする動画(共通テスト対策)

問題文全文(内容文):
【数学B】群数列の解説動画(共通テスト対策)
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】群数列の解説動画(共通テスト対策)
投稿日:2020.12.19

<関連動画>

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
この動画を見る 

福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が\hspace{40pt}\\
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、\hspace{20pt}\\
次の操作を繰り返す。\hspace{224pt}\\
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台\\
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台\\
に置き、それ以外の色の玉であれば箱Aを台に置く。\hspace{74pt}\\
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率\hspace{17pt}\\
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。\hspace{70pt}\\
(1) 正の整数nに対し、b_nとa_{n+1}をそれぞれ a_n を用いて表せ。\hspace{80pt}\\
(2) 正の整数nに対し、a_nをnを用いて表せ。\hspace{143pt}\\
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出\hspace{22pt}\\
さない確率をnを用いて表せ。\hspace{190pt}\\
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回\hspace{21pt}\\
だけ取り出す確率をnを用いて表せ。\hspace{165pt}
\end{eqnarray}

2022北里大学医学部過去問
この動画を見る 

京都産業大 複雑な数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k,N$自然数
$a_k=[\sqrt{ k }]$ガウス記号
$\displaystyle \sum_{k=1}^{N^2} a_k$を$N$で表せ

出典:2000年京都産業大学 過去問
この動画を見る 

東大 数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$

(1)
$a+b$の値は?

(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ

出典:1997年東京大学 過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 整数\ a_1,\ a_2,\ a_3,\ \ldotsを、さいころをくり返し投げることにより、以下のように\\
定めていく。まずa_1=1とする。そして、正の整数nに対し、a_{n+1}の値を、n回目に\\
出たさいころの目に応じて、次の規則で定める。\\
(\ 規則\ ) n回目に出た目が1,2,3,4ならa_{n+1}=a_n、5,6ならa_{n+1}=-a_n\\
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、\\
a_1=1,a_2=-1,a_3=-1,a_4=1となる。\\
a_n=1となる確率をp_nとする。ただし、p_1=1とし、さいころのどの目も、\\
出る確率は\frac{1}{6}であるとする。\\
(1)p_2,p_3を求めよ。\\
(2)p_{n+1}をp_nを用いて表せ。\\
(3)p_n \leqq 0.5000005を満たす最小の正の整数nを求めよ。\\
ただし、0.47 \lt \log_{10}3 \lt 0.48であることを用いてよい。\\
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 
PAGE TOP