福田のおもしろ数学085〜不等式を満たす自然数の組合せ - 質問解決D.B.(データベース)

福田のおもしろ数学085〜不等式を満たす自然数の組合せ

問題文全文(内容文):
$a$<$b$<$c$を満たす正の整数の組($a$,$b$,$c$)であって、
$a^2$-$20005a$>$b^2$-$20005b$>$c^2$-$20005c$
が成り立つものはいくつあるか。
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$<$b$<$c$を満たす正の整数の組($a$,$b$,$c$)であって、
$a^2$-$20005a$>$b^2$-$20005b$>$c^2$-$20005c$
が成り立つものはいくつあるか。
投稿日:2024.03.19

<関連動画>

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。

2021上智大学文系過去問
この動画を見る 

【高校数学】数Ⅰ-38 2次関数④(平方完成編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$y=ax^2+bx+c$を平方完成すると①y=①____________となり、軸は②x=________、頂点は③(____,____)となる。

◎次の2次式を平方完成しよう。
④$y=x^2-4x+6$
⑤$y=2x^2+8x+3$
⑥$y=-3x^2-18x-17$
この動画を見る 

立教大 整式の剰余

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2002}$を$x^4-1$で割った余りを求めよ.

立教大過去問
この動画を見る 

長方形と半円 3通りで解説しました

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形の面積=?
*図は動画内参照
この動画を見る 

小学生向け問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
円周率は3.14とする
斜線部の面積
*図は動画内参照
この動画を見る 
PAGE TOP