#高専_4#不定積分#元高専教員 - 質問解決D.B.(データベース)

#高専_4#不定積分#元高専教員

問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{(log t)^2}{t} dt$
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{(log t)^2}{t} dt$
投稿日:2024.08.06

<関連動画>

大学入試問題#394「積サーで紹介されてたから解いてみた」 東京大学(大正時代) #不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (log(log\ x)+\displaystyle \frac{1}{log\ x})dx$

出典:大正時代東京大学 入試問題
この動画を見る 

大学入試問題#915「減点祭りの問題」 #京都大学1965 #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 1$とする。
$\displaystyle \int_{1}^{x} (x-t)f(t)dt=x^4-2x^2+1$を満たす整式$f(t)$を定めよ。

出典:1965年京都大学
この動画を見る 

#千葉大学2020#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x\cos x$ $dx$

出典:2024年千葉大学
この動画を見る 

大学入試問題#493「詰みまでの構想力が必要」 東京理科大学(2001) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (t\sqrt{ 1+t^2 }+\displaystyle \frac{t^3}{\sqrt{ 1+t^2 }})dt$

出典:2001年東京理科大学 入試問題
この動画を見る 

【数Ⅲ-134】不定積分②(三角関数編)

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分➁・三角関数編)

⑤$\int (4sin x-3cos x)dx$

⑥$\int \frac{cos^3x+5}{cos^2x}dx$

⑦$\int \frac{1}{tan^2x}dx$
この動画を見る 
PAGE TOP