#高専_4#不定積分#元高専教員 - 質問解決D.B.(データベース)

#高専_4#不定積分#元高専教員

問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{(log t)^2}{t} dt$
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{(log t)^2}{t} dt$
投稿日:2024.08.06

<関連動画>

#高専数学#不定積分_13#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{\sqrt{ x+1 }-\sqrt{ x }}$

出典:高専数学 問題集
この動画を見る 

練習問題1(数検準1級、教員採用試験 レベル)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
この動画を見る 

#千葉大学2018#不定積分#数学者

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \sin^3x \cos^2x$ $dx$

出典:2018年千葉大学
この動画を見る 

#高専#不定積分_19#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{2x}-e^{-2x}}{e^x-e^{-x}} dx$

出典:国立高等専門学校機構
この動画を見る 

福田の数学〜北里大学2024医学部第2問〜関数と不等式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)関数$y=\frac{1}{x}$の定積分を用いて、$n\geqq 2$を満たすすべての$n$に対して$f(x)\gt 0$が成り立つことを示せ。
(2)$f(x)=x+\frac{x}{1+x}-2\log (1+x)$とおく。すべての正の実数$x$に対して、$f(x)\gt 0$が成り立つことを証明せよ。さらに、すべての正の整数$n$に対して$\frac{1}{n}+\frac{1}{n+1}\gt 2\log (1+\frac{1}{n})$を示せ。
(3)$n\geqq 2$を満たすすべての整数$n$に対して$\displaystyle \sum_{k=1}^n \frac{1}{k}-\frac{1}{2}(1+\frac{1}{n})\gt \log n$が成り立つことを証明せよ。
この動画を見る 
PAGE TOP