【数C】平面ベクトル:チェバメネの利用 △OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。 - 質問解決D.B.(データベース)

【数C】平面ベクトル:チェバメネの利用 △OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。

問題文全文(内容文):
△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。
チェバメネラウスを使った解法版
チャプター:

0:00 オープニング
0:05 問題文
0:13 メネラウスの定理
2:30 チェバの定理
3:16 名言

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。
チェバメネラウスを使った解法版
投稿日:2020.09.15

<関連動画>

【高校数学】 数B-8 ベクトルの成分①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図において、ベクトル$\overrightarrow{ a }$を成分を用いて$\overrightarrow{ a }=(a_1,a_2)$と表し、$|\vec{ a }|=$①____となる。

◎右図のベクトルを成分で表し、それぞれの大きさを求めよう。

②$\overrightarrow{ b }$

③$\overrightarrow{ c }$

④$\overrightarrow{ a }$

※図は動画内参照
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

慶應(医)空間 直線&平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
この動画を見る 

福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
tを正の実数とする。$OA=1,\ OB=t$である三角形OABにおいて、$\overrightarrow{ a }=\overrightarrow{ OA }$
$\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θ$とする。ただし、$0 \lt θ \lt \frac{\pi}{2}$とする。また、辺OAの中点
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。
(1)$\overrightarrow{ AN }$と$\overrightarrow{ BM }$を$\overrightarrow{ a }$と$\overrightarrow{ b }$を用いて表せ。
(2)内積$\overrightarrow{ AN }・\overrightarrow{ BM }$を$t$と$\cos θ$を用いて表せ。
(3)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$を$t$を用いて表せ。
(4)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$の最小値とそれを与えるtの値をそれぞれ求めよ。
(5)$\overrightarrow{ AN }∟\overrightarrow{ BM }$となるθが存在するtの値の範囲を求めよ。

2022立教大学経済学部過去問
この動画を見る 
PAGE TOP