数学オリンピック日本予選 合同式の基本 - 質問解決D.B.(データベース)

数学オリンピック日本予選 合同式の基本

問題文全文(内容文):
$1111^{2018}$を$11111$で割ったあまりを求めよ.

数学オリンピック過去問
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割ったあまりを求めよ.

数学オリンピック過去問
投稿日:2022.11.23

<関連動画>

整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$n$に対して

$N=(n+2)^3-n(n+1)(n+2)$

が36の倍数になるような$n$をすべて求めよ。

札幌医科大過去問
この動画を見る 

大学入試問題#885「油断したら沼るかも」 #奈良県立医科大学(2014) 三角関数と整数問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。

出典:2014年奈良県立医科大学
この動画を見る 

福田のおもしろ数学407〜a^3+b^3+c^3-3abcの取り得る最小の正の値

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$a,b,c$に対して

$a^3+b^3+c^3-3abc$

が取り得る最小の正の値を求めよ。

またそのときの$a,b,c$の値は?
この動画を見る 

ルートを外せ11 B 2021 中央大附属

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{60(n+1)(n^2-1)}$が整数となるような2ケタの整数nをすべて求めよ。

2021中央大学附属高等学校
この動画を見る 

整数問題 2通りの解法で

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$ 自然数
$7^{2n-1}+9^{2n-1}+47^{2n-1}$
は63の倍数であることを示せ。
この動画を見る 
PAGE TOP