【高校数学】 数Ⅰ-68 2次不等式⑦ ・ 連立不等式編 - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-68  2次不等式⑦ ・ 連立不等式編

問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$

③$2 \geqq x^2-x \geqq 4x-4$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$

③$2 \geqq x^2-x \geqq 4x-4$
投稿日:2014.09.23

<関連動画>

論理と集合「集合の記号」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$

⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
この動画を見る 

円が通過した面積は?文星芸術大附属(栃木県)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径1cmの円が滑らないように△ABCの周りを1周する
円が通過した部分の面積は?
*図は動画内参照
文星芸術大学附属高等学校(改)
この動画を見る 

sin cos

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

平方根の複雑な計算を数楽に

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 数学を数楽に
問題文全文(内容文):
$(4 \sqrt2 + 4)(5 \sqrt 2 -5)^2$
この動画を見る 

【数学Ⅰ/三角比】正弦定理を使って辺の比を求める問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$\displaystyle \frac{\sin A}{4}=\displaystyle \frac{\sin B}{5}=\displaystyle \frac{\sin C}{2}$が成立しているとき、次の問いに答えよ。
(1)3辺の比$a:b:c$を求めよ。
(2)$\cos B$の値を求めよ。
この動画を見る 
PAGE TOP