福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
投稿日:2023.06.21

<関連動画>

ただの因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+$
$x^3+x^2+x+1$
これを因数分解せよ.(実数係数)
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第5問〜図形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
点$Z$を端点とする半直線$ZX$と半直線$ZY$があり、$0° \lt \angle XZY \lt 90°$とする。
また、$0° \lt \angle SZX \lt \angle XZY$かつ$0° \lt \angle SZY \lt \angle XZY$を満たす点$S$をとる。
点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円を作図したい。
円$O$を、次の$(Step\ 1)~(Step\ 5)$の手順で作図する。

手順
$(Step\ 1) \angle XZY$の二等分線$l$上に点$C$をとり、下図(※動画参照)のように半直線$ZX$
と半直線$ZY$の両方に接する円$C$を作図する。また、円$C$と半直線$ZX$との接点を$D,$
半直線$ZY$との接点を$E$とする。
$(Step\ 2)$ 円Cと直線$ZS$との交点の一つを$G$とする。
$(Step\ 3)$ 半直線$ZX$上に点$H$を$DG//HS$を満たすようにとる。
$(Step\ 4)$ 点$H$を通り、半直線$ZX$に垂直な直線を引き、$l$との交点を$O$とする。
$(Step\ 5)$ 点$O$を中心とする半径$OH$の円$O$をかく。

(1)$(Step\ 1)~(Step\ 5)$の手順で作図した円$O$が求める円であることは、次の構想に
基づいて下のように説明できる。

構想:円$O$が点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円であることを
示すには、$OH=\boxed{\boxed{\ \ ア\ \ }}$が成り立つことを示せばよい。

作図の手順より、$\triangle ZDG$と$\triangle ZHS$との関係、および$\triangle ZDC$と$\triangle ZHO$との
関係に着目すると
$DG:\boxed{\boxed{\ \ イ\ \ }}=\boxed{\boxed{\ \ ウ\ \ }}:\boxed{\boxed{\ \ エ\ \ }}$
$DC:\boxed{\boxed{\ \ オ\ \ }}=\boxed{\boxed{\ \ ウ\ \ }}:\boxed{\boxed{\ \ エ\ \ }}$

であるから、$DG:\boxed{\boxed{\ \ イ\ \ }}=DC:\boxed{\boxed{\ \ オ\ \ }}$となる。
ここで、3点$S,O,H$が一直線上にある場合は、$\angle CDG=\angle \boxed{\boxed{\ \ カ\ \ }}$で
あるので、$\triangle CDG$と$\triangle \boxed{\boxed{\ \ カ\ \ }}$との関係に着目すると、$CD=CG$より
$OH=\boxed{\boxed{\ \ ア\ \ }}$であることがわかる。
なお、3点$S,O,H$が一直線上にある場合は、$DG=\boxed{\ \ キ\ \ }DC$となり、
$DG:\boxed{\boxed{\ \ イ\ \ }}=DC:\boxed{\boxed{\ \ オ\ \ }}$より$OH=\boxed{\boxed{\ \ ア\ \ }}$である
ことがわかる。

$\boxed{\boxed{\ \ ア\ \ }}~\boxed{\boxed{\ \ オ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$DH$ ①$HO$ ②$HS$ ③$OD$ ④$OG$
⑤$OS$ ⑥$ZD$ ⑦$ZH$ ⑧$ZO$ ⑨$ZS$

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$OHD$ ①$OHG$ ②$OHS$ ③$ZDS$
④$ZHG$ ⑤$ZHS$ ⑥$ZOS$ ⑦$ZCG$


(2)点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円は二つ作図できる。
特に、点$S$が$\angle XZY$の二等分線$l$上にある場合を考える。半径が大きい方の
円の中心を$O_1$とし、半径が小さい方の円の中心を$O_2$とする。また、円$O_2$と
半直線$ZY$が接する点を$I$とする。円$O_1$と半直線$ZY$が接する点を$J$とし、円$O_1$と
半直線$ZX$が接する点を$K$とする。
作図をした結果、円$O_1$の半径は$5$, 円$O_2$の半径は3であったとする。このとき、
$IJ=\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケコ\ \ }}$である。さらに、円$O_1$と円$O_2$の接点$S$に
おける共通接線と半直線$ZY$との交点を$L$とし、
直線$LK$と円$O_1$との交点で点$K$とは異なる点を$M$とすると

$LM・LK=\boxed{\ \ サシ\ \ }$

である。
また、$ZI=\boxed{\ \ ス\ \ }\sqrt{\boxed{\ \ セソ\ \ }}$であるので、直線$LK$と直線$l$との交点を$N$とすると

$\displaystyle \frac{LN}{NK}=\displaystyle \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}, SN=\displaystyle \frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$

である。

2021共通テスト過去問
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第2問〜平面ベクトルの直交と絶対値の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCは
$OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4$
を満たすとする。また、三角形ABCの重心をGとするとき、$OG=\sqrt2$である。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{ア}}{\boxed{イ}},$
$\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC}=\frac{\boxed{ウエ}}{\boxed{オ}}$
(2)$\ \overrightarrow{ OG }$と$\overrightarrow{ OA }+k\overrightarrow{ OB }$が垂直であるのは$k=\boxed{カキ}$のときである。
(3)$t$を実数とする。
$|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|$
の最小値は$\frac{\sqrt{\boxed{クケコ}}}{\boxed{サ}}$であり、
そのときのtの値は$\frac{\boxed{シス}}{\boxed{セ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

福田のおもしろ数学577〜条件付きの最大を求める

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2x^2+3y^2+4z^2=1$のとき

$5x-6y+7z$の最大値と

そのときの$x,y,z$を求めよ。
    
この動画を見る 

【数Ⅰ】数と式:√(8+4√3)の2重根号を外す!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{(8+4\sqrt3)}$の2重根号を外しなさい
この動画を見る 
PAGE TOP