福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
投稿日:2023.06.21

<関連動画>

17滋賀県教員採用試験(数学:4番 実数解の個数)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k:$定数
方程式$k(x-1)^2=|x|$の異なる実数解の個数を調べよ。

出典:滋賀県教員採用試験
この動画を見る 

立方根・平方根の混じった方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ
$\sqrt[ 3 ]{ 2-x }+\sqrt{ x-1 }=1$
この動画を見る 

【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。

(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$

(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$

次の計算をせよ。

(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$

次の計算をせよ。

(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$

(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
この動画を見る 

悠仁さまも受験!箱ヒゲ図 筑波大学附属(改題)2022 入試問題解説100問解説!!56問目

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1問5点で20問の100点満点のテスト。
8人が受けたときの平均点は?
*図は動画内参照

2022筑波大学附属高等学校
この動画を見る 

「二次不等式の解の条件②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の2次方程式がただ1つの共通な実数解をもつような定数$k$の値を求めよ。
また、その共通会を求めよ。
$x^2+(k-4)x-2=0$ ・・・①
$x^2-2x-k=0$ ・・・②

次の問いに答えよ。
(1)
すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(2)
すべての実数$x$について不等式$(k-2)x^2-2(k-1)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。

(3)
2次不等式$x^2-kx+k+3 \leqq 0$を満たす実数$x$が存在するような定数$k$の値の範囲を求めよ。

(4)
$x \geqq 2$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(5)
$-2 \leqq x \leqq 0$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \geqq 0$が成り立つような$k$の範囲を求めよ。
この動画を見る 
PAGE TOP