【高校数学】数Ⅰ-3 指数法則 - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-3 指数法則

問題文全文(内容文):
$a^{m}×a^{n}=$①___,$(a^{m})^{n}=$②___,$(ab)^2=$③___

◎計算しよう。
④$a^3×a^2=$
⑤$5x×2x^2=$
⑥$(3a^4)^2=$
⑦$(-2ab^2)^3=$
⑧$6x^2y×(-3xy^2)^2=$

◎展開しよう。
⑨$(x^2-2xy-y^2)(x+3y)$
⑩$(x^23-2x)(5x-x^2+1)$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a^{m}×a^{n}=$①___,$(a^{m})^{n}=$②___,$(ab)^2=$③___

◎計算しよう。
④$a^3×a^2=$
⑤$5x×2x^2=$
⑥$(3a^4)^2=$
⑦$(-2ab^2)^3=$
⑧$6x^2y×(-3xy^2)^2=$

◎展開しよう。
⑨$(x^2-2xy-y^2)(x+3y)$
⑩$(x^23-2x)(5x-x^2+1)$
投稿日:2014.03.07

<関連動画>

【数Ⅰ】【図形と計量】三角比の相互関係式の使い方2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sin\theta-\cos\theta$を$\sin\theta$だけを用いた式で表せ。また,$\cos\theta$だけを用いた式で表せ。
この動画を見る 

「二次不等式の解の配置②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散

アイキャッチ画像
単元: #データの分析#データの分析#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(2)〜絶対の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$|X-|X-2||=1$の解をすべて求めよ

2022立教大学経済学部過去問
この動画を見る 

華麗に解こう

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$a+b+c=4$
$a^2+b^2+c^2=10$
$a^3+b^3+c^3=22$
$a^4+b^4+c^4=?$
この動画を見る 
PAGE TOP