法政大 確率 - 質問解決D.B.(データベース)

法政大 確率

問題文全文(内容文):
2023法政大過去問

サイコロを3つ同時に投げる。出た目の積が300の倍数となる確率を求めよ.
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023法政大過去問

サイコロを3つ同時に投げる。出た目の積が300の倍数となる確率を求めよ.
投稿日:2023.10.23

<関連動画>

橋本環奈に年賀状届く確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
片っ端から住所書いて橋本環奈に年賀状が届く確率は?
この動画を見る 

数学の「確率」でつまづくポイントを解説!全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「数学の「確率」でつまづくポイント」について解説しています。
この動画を見る 

Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.2  0!はいくつ?

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#式の計算(整式・展開・因数分解)#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.2  0!はいくつ?
この動画を見る 

【高校数学】重複を許して取る組合せの例題~必死に解くで~ 1-12.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
袋の中に赤玉,青玉,白玉,黒玉がたくさん入ってる。
この袋から7個の玉を取り出すとき、玉の取り出し方は何通りあるか。

2⃣
1個のさいころを3回投げ、出た目を順に$a,b,c$とする。
次の場合は何通りあるか。
(i) $a \lt b \lt c$
(ii) $a \leqq b \leqq c$

3⃣
次の場合を満たす$x,y,z$は何通りか
(i) $x + y + z = 9, x,y,z$は負でない整数
(ii) $x + y + z = 15, x,y,z$は正の整数
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 
PAGE TOP