ハルハルさんの積分問題(2) 「誘導があっても難問:コナミコマンドを使いたい!!↑↑↓↓←→←→BA」 - 質問解決D.B.(データベース)

ハルハルさんの積分問題(2) 「誘導があっても難問:コナミコマンドを使いたい!!↑↑↓↓←→←→BA」

問題文全文(内容文):
0πcosx6+2sinx3cosx23 dx
チャプター:

00:00 問題紹介
00:10 本編スタート
10:36 作成した解答①
10:47 作成した解答②
10:59 作成した解答③
11:10 エンディング(楽曲提供:兄いえてぃさん)

単元: #積分とその応用#定積分#その他
指導講師: ますただ
問題文全文(内容文):
0πcosx6+2sinx3cosx23 dx
投稿日:2022.12.25

<関連動画>

【数Ⅲ-154】定積分の置換積分法③

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法③)
Q次の定積分を求めよ。

π3π3x2sinx dx

111x1+x2 dx

π2π2cos3x dx
この動画を見る 

【高校数学】千葉大学の積分の問題をその場で解説しながら解いてみた!毎日積分94日目~47都道府県制覇への道~【㊲千葉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【千葉大学 2023】
等式f(x)=x2+12(xf(t)t)dtを満たす関数f(x)を求めよ。
この動画を見る 

福田の数学〜東北大学2024年理系第6問〜円錐の側面と平面の交わりの曲線

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
6 xyz空間内のxy平面上にある円C:x2+y2=1および円盤D:x2+y2≦1を考える。Dを底面とし点P(0,0,1)を頂点とする円錐をKとする。A(0,-1,0), B(0,1,0)とする。xyz空間内の平面H:z=xを考える。すなわち、Hはxz平面上の直線z=xと線分ABをともに含む平面である。Kの側面とHの交わりとしてできる曲線をEとする。π2θπ2を満たす実数θに対し、円C上の点Q(cosθ,sinθ,0)をとり、線分PQとEの共有点をRとする。
(1)線分PRの長さをr(θ)とおく。r(θ)θを用いて表せ。
(2)円錐Kの側面のうち、曲線Eの点Aから点Rまでを結ぶ部分、線分PA、および線分PRにより囲まれた部分の面積をS(θ)とおく。θと実数hが条件0≦θθ+hπ2 を満たすとき、次の不等式が成り立つことを示せ。
h{r(θ)}222S(θ+h)S(θ)h{r(θ+h)}222
(3)円錐Kの側面のうち、円Cのx≧0の部分と曲線Eにより囲まれた部分の面積をTとおく。Tを求めよ。必要であればtanθ2=$uとおく置換積分を用いてもよい。
この動画を見る 

【高校数学】毎日積分78日目~47都道府県制覇への道~【㉑奈良】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) log|x+1+x2|
(ii) 12(x1+x2+log|x+1+x2|)
(2)次の等式を示せ。
0π2cos3x1+sin2xdx=12{3log(1+2)2}
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 自然数nに対し、定積分In=01xnx2+1dxを考える。このとき、次の問いに答えよ。
(1)In+In+2=1n+1を示せ。
(2)0≦In+1In1n+1を示せ。
(3)limnnIn を求めよ。
(4)Sn=k=1n(1)k12k とする。このとき(1), (2)を用いてlimnSn を求めよ。

2018名古屋大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image