受験テクニック満載 受験生よ見よ 日大三島 - 質問解決D.B.(データベース)

受験テクニック満載 受験生よ見よ 日大三島

問題文全文(内容文):
台形OACB=?
*図は動画内参照

日本大学三島高等学校
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
台形OACB=?
*図は動画内参照

日本大学三島高等学校
投稿日:2022.08.06

<関連動画>

【高校受験対策】数学-死守34

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34

①$(-8)+(-4)$

②$-\frac{5}{7}+\frac{2}{3}$

③$65a^2b \div5a$

④$\frac{18}{\sqrt{2}}-\sqrt{98}$

⑤$(x+9)^2-(x-3)(x-7)$

⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。

⑦2次方程式$6x^2-2x-1=0$を解きなさい。

⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。

④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。

⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。


Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。



右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る 

中学生の解き方 小学生の解き方 ベリースライム

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#過去問解説(学校別)#平面図形#角度と面積#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
4つの正方形
水色部分の面積は?
*図は動画内参照
この動画を見る 

【分かっていても手間はかかる】連立方程式:東大寺学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
x,yについての連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x+4y}-\dfrac{4}{4x-3y}=10 \\
\dfrac{4}{3x+4y}+\dfrac{3}{4x-3y}=5
\end{array}
\right.
\end{eqnarray}$
を解け.

東大寺学園高校過去問
この動画を見る 

佐賀県立高校入試2022年数学2⃣連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学2⃣連立方程式
-----------------
(ア)
DVDを借りる枚数について、①にあてはまる式を$x$、$y$を用いて表しなさい。
①=20

(イ)
料金の合計について、②にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が4枚以下のとき、②=2200

(ウ)
料金の合計について、③にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が5枚以上のとき。③=2200

(エ)
準新作のDVDを借りる枚数を求めなさい。
この動画を見る 

【ケントウする点は…!】連立方程式:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $の連立方程式であり,$ a,b $は正の数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
ax-y=4 \\
x+by=7
\end{array}
\right.
\end{eqnarray}$
の解を$ a $と$ b $を用いて表すと$ x=\Box,y=\Box $である.

大阪星光学院高校過去問

$ x,y $の連立方程式であり,$ a,b $は正の数である.
この動画を見る 
PAGE TOP