問題文全文(内容文):
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
チャプター:
0:00 オープニング
0:24 問題の分析と解き方の方針
1:42 平行移動前の座標
2:40 関数式を組み立てる
4:00 まとめ
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
投稿日:2021.10.16