【数A】整数の性質:知らなきゃ解けない?整数の方程式の解法パターン!ab+2a+2b=41 (1<a<b:自然数) - 質問解決D.B.(データベース)

【数A】整数の性質:知らなきゃ解けない?整数の方程式の解法パターン!ab+2a+2b=41 (1<a<b:自然数)

問題文全文(内容文):
ab+2a+2b=41 (1<a<b:自然数)
をみたすa,bを求めよ
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ab+2a+2b=41 (1<a<b:自然数)
をみたすa,bを求めよ
投稿日:2020.06.09

<関連動画>

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

整数 九州大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを示せ.

2014九州大過去問
この動画を見る 

おうぎ形の折り返し 東工大附属

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
何度?
*図は動画内参照

東京工業大学附属科学技術高等学校
この動画を見る 

千葉大(医)整数問題 良問再投稿

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):

$3^n=k^3+1$


$3^n=k^2-40$
$k,n$自然数

出典:千葉大学大学院医学研究院・医学部 過去問
この動画を見る 

分数の割り算

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
この動画を見る 
PAGE TOP