一橋大 3次方程式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

一橋大 3次方程式 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a,b$整数

$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。

出典:一橋大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$整数

$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。

出典:一橋大学 過去問
投稿日:2019.02.22

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第3問〜データの分析・平均・標準偏差・共分散・相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある病院の入院患者10人に対して、病院内で作っている粉薬の評価を調査した。
調査の評価項目は、粉薬の「飲みやすさ」と、「飲みやすさ」の要因と考えられる
「匂い」「舌触り」、「味」の計4項目についてである。
10人の患者が、評価項目について最も満足な場合は10、最も不安な場合は1として、
1以上10以下の整数で評価した。表内の平均値、分散、共分散の数値は四捨五入
されていない正確な値である。(※動画参照)
「飲みやすさ」との共分散は、「飲みやすさ」に対する評価の偏差と、各評価項目
に対する評価の偏差の積の平均値である。
(1)$(\textrm{i})$患者番号5の「舌触り」に対する(t)の値は$\boxed{\ \ ニ\ \ }$である。
$(\textrm{ii})$「飲みやすさ」に対する評価の標準偏差の値は$\boxed{\ \ ヌ\ \ }$である。
(2)「飲みやすさ」に対する評価と「舌触り」に対する評価の相関係数の値を
分数で表すと$\boxed{\ \ ネ\ \ }$である。
(3)「飲みやすさ」と「匂い」、「飲みやすさ」と「舌触り」、「飲みやすさ」と「味」
の相関係数の値をそれぞれ$r_1,r_2,r_3$と表し、「匂い」、「舌触り」、「味」の評価の
平均値をそれぞれ$a_1,a_2,a_3$と表す。$a_i,r_i (1 \leqq i \leqq 3)$に対し、$\bar{ r }$と$\bar{ a }$は以下の式で定める。
$\bar{ r }=\frac{r_1+r_2+r_3}{3},\bar{ a }=\frac{a_1+a_2+a_3}{3}$
「飲みやすさ」との相関係数の値が最も1に近い評価項目は$\boxed{\ \ ノ\ \ }$である。
また、「$r_i-\bar{ r } \lt0$かつ$a_i-\bar{ a } \gt0$」を満たす評価項目をすべて挙げると$\boxed{\ \ ノ\ \ }$である。

(4)「匂い」、「舌触り」、「味」のうち、$\boxed{\ \ ハ\ \ }$にあてはまらない評価項目
(以降、この評価項目をXと表す)に関して改良を行った。改良後の紛薬に対して、同じ10人の
患者がXと「飲みやすさ」について再び評価した。
改良後の調査結果では、Xの評価は10人全員の評価が改良前に比べてそれぞれ1上がっていた。
改良後のXの評価の平均値を求めると$\boxed{\ \ ヒ\ \ }$であり、標準偏差は改良前調査における値と
比べて$\boxed{\ \ フ\ \ }$。また、「飲みやすさ」の評価については、改良前の調査において評価が
1以上4以下の場合は2上がり、5以上9以下の場合は1上がり、10の場合は評価が変わらず
10であった。よって改良後の「飲みやすさ」に対する評価の平均値を求めると$\boxed{\ \ ヘ\ \ }$であり、
標準偏差は改良前の調査における値と比べて$\boxed{\ \ ホ\ \ }$。

2022慶應義塾大学薬学部過去問
この動画を見る 

【#9】【因数分解100問】基礎から応用まで!(81)〜(90)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(81)$(x+1)(x^2+x+1)(x^2-x+1)$
(82)$(x+1)(x^2+1)(x^4+1)$
(83)$(a+b-1)(a-2b+c)$
(84)$(a-c)^3$
(85)$(x^2+2x-2)(x^2+2x-21)$
この動画を見る 

【数Ⅰ】【2次関数】x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。
この動画を見る 

【数学】グラフの平行移動がマイナスの理由

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
グラフの平行移動がマイナスの理由説明動画です
この動画を見る 

大阪市立大 奇数の和 奇数の平方の和

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$

①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.

2021大阪市立大過去問
この動画を見る 
PAGE TOP