データの分析 平均点からデータを求める【ユースケ・マセマティックがていねいに解説】 - 質問解決D.B.(データベース)

データの分析 平均点からデータを求める【ユースケ・マセマティックがていねいに解説】

問題文全文(内容文):
次のデータは、ある体操競技会に参加した10人のある種目の得点である。
13.2 13.0 13.7 12.5 14.6 12.3 12.5 11.9 13.9 a (単位は点)
このデータの平均値が13.1点であるとき、aの値を求めよ。
チャプター:

00:00 問題紹介
00:27 解法解説

単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある体操競技会に参加した10人のある種目の得点である。
13.2 13.0 13.7 12.5 14.6 12.3 12.5 11.9 13.9 a (単位は点)
このデータの平均値が13.1点であるとき、aの値を求めよ。
投稿日:2023.05.06

<関連動画>

データの分析 データが変更されたときの平均、分散の関係【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

この問題で差がつく!!円の良問 近江高校(滋賀)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
DE=?
*図は動画内参照
近江高等学校
この動画を見る 

場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$が整数であるとき$S=\vert n-1 \vert+\vert n-2 \vert+……+\vert n-100 \vert$の最小値を求めよ。
また、そのときの$n$の値を求めよ。

京都大学1961年過去問
この動画を見る 

別に積分しろとは言ってません。(広陵(改))

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
SとTどっちの面積が大きい?
*図は動画内参照

広陵高等学校
この動画を見る 
PAGE TOP