この長さを求める 国立高専←漢字間違えてしまいました。 - 質問解決D.B.(データベース)

この長さを求める 国立高専←漢字間違えてしまいました。

問題文全文(内容文):
$\stackrel{\huge\frown}{BE}$=?
*図は動画内参照

国立高専
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{BE}$=?
*図は動画内参照

国立高専
投稿日:2023.02.07

<関連動画>

福田のおもしろ数学418〜条件を満たす3つの数を割りきれるようにすることが可能か不可能かの考察

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

十の位が$a$,一の位が$b$である数を$\overline{ab}$で表す。

$0$以外の$1$桁の異なる$3$つの数$a,b,c$に対して

$\overline{ab}$が$c$で割り切れ、$\overline{bc}$が$a$で割り切れ

$\overline{ca}$が$b$で割り切れることは可能か?
   
この動画を見る 

東大の過去問を2倍難しくしてみた

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$6$進法で書かれた3桁の数を2乗したら下3桁が元の数と同じであることを示せ.
この動画を見る 

【数A】確率:2019年第2回高2K塾記述模試の第4問を解説!「難しそうだから手を付けませんでした...」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る 

高校1年生から早稲田に挑戦!三角比の難問!【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
m,nを正の整数とする。半径1の円に内接する△ABCが
sinA=m/17,sinB=n/17,sin²C=sin²A+sin²B
を満たすとき△ABCの内接円の半径を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第2問〜ポーカーの役が揃う場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つのスートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の代わりに、A,J,Q,Kの記号を用いることが多い)
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。52枚のカードから5枚を抜き出す組合せの数は${}_{52}\textrm{C}_5=2598960$通りあるが、それがストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの5枚のカードの最小の数は$1,2,\ldots,\boxed{\ \ アイ\ \ }$のどれかであるから、それぞれのスートごとに$\boxed{\ \ アイ\ \ }$通り考えられる。よって、$4\times \boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }$通りのストレートフラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、スートがそろっていない組合せの数なので$\boxed{\ \ オカキクケ\ \ }$通りある。
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚のふたつの組があり、3枚の組を選ぶ組合せ$\boxed{\ \ コサ\ \ }\times {}_4\textrm{C}_3$、残り2枚のカードを選ぶ組合せは$\boxed{\ \ シス\ \ }\times {}_4\textrm{C}_2$であるから、フルハウスとなる組合せの数は$\boxed{\ \ コサ\ \ }\times{}_4\textrm{C}_3\times$$\boxed{\ \ シス\ \ }\times$${}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ }$ 通りである。

2021慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP