2023高校入試解説2問目 文字でおけ! 早稲田佐賀 - 質問解決D.B.(データベース)

2023高校入試解説2問目 文字でおけ! 早稲田佐賀

問題文全文(内容文):
$2023 \times 108 -2022 \times 110 +4046 -54$

2023早稲田佐賀高等学校
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2023 \times 108 -2022 \times 110 +4046 -54$

2023早稲田佐賀高等学校
投稿日:2023.01.08

<関連動画>

【中学数学】式の計算:等式変形マスターへの道 6発目!『-は消しちゃおう編』 3x-2y=5をy=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3x-2y=5をy=の形にしましょう。
この動画を見る 

高等学校入試予想問題:宮崎県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#確率#2次関数#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$27xy\times x^2\div(-9x^2y)$を計算せよ.
(2)$3(x+6y)-2(x+8y)$を計算せよ.
(3)$y$は$x$に比例し,$x=-3$のとき,$y=36$である.
このとき,$y$を$x$の式で表せ.
(4)箱の中に4本のくじ,そのうち3本が当たり.
Aさんが1本引いて戻す.同様にBさんが引く.
2人共,当たりくじをひく確率は?

$\boxed{2}$
$y=x^2$上に$A(2,4)$である.
点$B$は$y$軸上,$y$座標が4より大きい範囲で動く.
$C,D$は,$B$を通り,$x$軸と平行な直線と$y=x^2$の交点である.

(1)点$E$の$x$座標が5となるとき,$\triangle AOE$の面積は?
(2)$CA=AE$となるとき,直線$DE$の傾きは?

$\boxed{3}$

(1)$\triangle AED \backsim \triangle CFD$であることの証明をせよ.
(2)$AE=&,EB=5,BC=2,CF=8$のとき,
①$AC=?$ ②$AD=?$ ③$DF=?$ ④$\Box ABFD$の面積は?
この動画を見る 

正負の数の計算、工夫しよう!膳所高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$42.9 \times \frac{5}{13} - 14.3 \times (\frac{7}{26} - \frac{1}{13} + \frac{1}{2})$
膳所高等学校
この動画を見る 

【中2 数学】  中2-59  仮定と結論

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 仮定と結論
以下の問に答えよ
[ポイント] a=b、b=c ならば、a=c である。
仮定…①____、結論…②____
証明するとき、仮定は③____アイテム、結論は④____アイテム
◎仮定には下線、結論には波線を引こう!
⑤ △ ABC ≡ △ DEF ならば、AB=DEである。
⑥ 2 つの直線が平行ならば、錯角は等しい。
⑦ 芸能人に会えるならば、ベッキーに会う。
※図は動画内参照
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP