佐賀県立高校入試2022年<img draggable="false" role="img" class="emoji" alt="5⃣" src="https://s.w.org/images/core/emoji/15.1.0/svg/35-20e3.svg">相似(1)~(3) - 質問解決D.B.(データベース)

佐賀県立高校入試2022年5⃣相似(1)~(3)

問題文全文(内容文):
佐賀県立高校入試2022年5⃣相似(1)~(3)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。

(1) ∠ABCの大きさを求めなさい。

(2) △ACD△AFEであることを証明しなさい。

(3) 線分OO'と線分CDの長さの比を、最も簡単な整数の比で表しなさい。
単元: #数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2022年5⃣相似(1)~(3)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。

(1) ∠ABCの大きさを求めなさい。

(2) △ACD△AFEであることを証明しなさい。

(3) 線分OO'と線分CDの長さの比を、最も簡単な整数の比で表しなさい。
投稿日:2023.02.07

<関連動画>

【3分で基礎を理解!5分で発展まで!】二次関数:宮崎県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#宮崎県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 宮崎県高校

関数:y=x2
  ↓
xの変域が2x1のとき
yの変域を求めなさい。
この動画を見る 

【数学】中3-33 二次関数って?

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
y=①____で表されるとき、

『yはXの②____に③____する』といって、
このときのaを④____という。

◎xとyの関係を式に表そう!

⑤ 1辺がxcmの正方形の面積ycm2

⑥ 1辺がxcmの立方体の体積ycm3

⑦ 1辺がxcmの立方体の表面積ycm2

⑧底辺xcm、高さ8cmの 三角形の面積ycm2

⑨半径xcmの円 の面積ycm2

⑩底面が1辺2xcmの正方形、高さが6cm の正四角錐の体積ycm2

⑪ ⑤~⑩のうち、yがxの2乗に比例するのは?
この動画を見る 

X=2022??

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
(x1)2=(20221)2
この動画を見る 

やっぱり因数分解は東大寺学園

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
x3xy2x2y2x+1

東大寺学園高等学校
この動画を見る 

【数学】中高一貫校用問題集幾何:三平方の定理:空間図形 正八面体

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図は1辺の長さが2cmの正八面体ABCDEFである。このとき、次の問いに答えなさい。
(1)正八面体ABCDEFの体積を求めなさい。
(2)辺CDの中点をMとする。辺AC上に点Pを、BP+PMの長さが最も短くなるようにとる。このとき、BP+PMの長さを求めなさい。
(3)正八面体ABCDEFを辺BCに垂直な平面で切って2つの立体にしたところ、2つの立体の体積が等しくなった。このとき、切り口の図形の面積を求めなさい。
この動画を見る 
PAGE TOP preload imagepreload image