微分の基本問題(落とし穴注意) - 質問解決D.B.(データベース)

微分の基本問題(落とし穴注意)

問題文全文(内容文):
$
f(x)=x^4-8x^3+18kx^2
$
が極大値をもたないkの範囲
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
f(x)=x^4-8x^3+18kx^2
$
が極大値をもたないkの範囲
投稿日:2023.12.09

<関連動画>

【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題088〜一橋大学2018年度文系第4問〜四面体の体積の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。

2018一橋大学文系過去問
この動画を見る 

福田のおもしろ数学491〜三角関数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x,y$は実数であり

$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin x+\cos y=1 \\
\cos x+\sin y=-1
\end{array}
\right.
\end{eqnarray}$

のとき、$\cos 2x=\cos 2y$となることを

証明せよ。
    
この動画を見る 

福田のおもしろ数学464〜素数でないことを証明する

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$a,b,c,d$が

$ab=cd$を満たすとする。

このとき、

$a+b+c+d$が

素数でないことを証明せよ。
    
この動画を見る 

なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
なぜ定積分で面積が求められるのか?解説していきます.
この動画を見る 
PAGE TOP