福岡大(医)連立指数方程式 - 質問解決D.B.(データベース)

福岡大(医)連立指数方程式

問題文全文(内容文):
$x,y$は1でない正の実数であるとする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}=x^{90}
\end{array}
\right.
\end{eqnarray}$

福岡大(医)過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は1でない正の実数であるとする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}=x^{90}
\end{array}
\right.
\end{eqnarray}$

福岡大(医)過去問
投稿日:2023.04.09

<関連動画>

福田の数学〜慶應義塾大学2024年商学部第1問(1)〜指数法則を使った計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
この動画を見る 

自力で対数の範囲を求めて桁数を出す【数学 入試問題】【岐阜大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)不等式$\dfrac{3}{10}<log_{10} 2<\dfrac{4}{13}$を証明せよ。
(2)(1)を用いて、$2^{100}は何桁の数か答えよ。

岐阜大過去問
この動画を見る 

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 

福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(13)\hspace{50pt}\\
\\
y=e^{\frac{1}{x^2-1}} (-1 \lt x \lt 1)\\
\\
のグラフを描け。凹凸、漸近線を調べよ。
\end{eqnarray}
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}

2022東北大学理系過去問
この動画を見る 
PAGE TOP