【数B】第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ - 質問解決D.B.(データベース)

【数B】第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ

問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ
チャプター:

0:00 オープニング
0:08 問題の概要
1:50 辺々割ってみる
5:34 まとめ
6:34 エンディング

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ
投稿日:2023.04.26

<関連動画>

3手1組の好手順 By ハルハルさん #数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=0$
$a_{n+1}=(a_n+2)(a_n+6)$を満たす一般項$a_n$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 

関西医科大 三項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=0,a_2=1$
$a_{n+2}=10a_{n+1}+51a_{n}$とする。

①一般項$a_n$を求めよ。
②$a_n$を10で割ったあまりを$b_n$とする。
$\displaystyle \sum_{k=1}^{2m} b_k$を求めよ。

関西医科大過去問
この動画を見る 

Σ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
この動画を見る 

虚数単位の入った漸化式 学習院大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019学習院大学過去問題
$Z_1=1$
$Z_{n+1}=iZ_n+2$
(1)$Z_{2019}$
(2)$Z_n$が通る円の中心と半径
この動画を見る 
PAGE TOP