【数B】第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ - 質問解決D.B.(データベース)

【数B】第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ

問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ
チャプター:

0:00 オープニング
0:08 問題の概要
1:50 辺々割ってみる
5:34 まとめ
6:34 エンディング

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ
投稿日:2023.04.26

<関連動画>

【高校数学】 数B-79 数列の和と一般項②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項から第$n$項までの和$S_n$が
次の式で表される数列$\{a_n\}$の一般項を求めよう.

①$S_n=n^2+2n+2$

②$S_n=a_{n}+(n-1)^2$
この動画を見る 

数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{n}{(n+1)!}$
この動画を見る 

Σ立法の和の公式を視覚的に

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1^3+2^3+\cdots+n^3=\{ \frac{n(n+1)}{2} \}^2$
$1^2+2^2+3^2+\cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第4問〜フィボナッチ数列と無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

数列$\{a_n\}$を

$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$

により定め、数列$\{b_n\}$を

$\tan b_n=\dfrac{1}{a_n}$

により定める。

ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。

(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。

(2)$m\geqq 1$($m$は整数)に対して、

$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。

(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

福田の一夜漬け数学〜数列・群数列(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列 $1 2 1 3 2 $$1 4 $$3 $$2 $$1 $$5\cdots$について次を求めよ。
(1)第100項
(2)初項から第100項までの和


数列 $ \dfrac{2}{3} \dfrac{2}{5} \dfrac{4}{5} \dfrac{2}{7} \dfrac{4}{7} \dfrac{6}{7} \dfrac{2}{9}$$ \dfrac{4}{9}$$ \dfrac{6}{9}$$ \dfrac{8}{9}$$ \dfrac{2}{11}\cdots$について

次の問いに答えよ。
(1)$\displaystyle \frac{4}{15}$は第何項か。
(2)第100項は何か。
この動画を見る 
PAGE TOP