福田の数学〜立教大学2025経済学部第1問(5)〜絶対値の付いた関数の定積分の計算 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025経済学部第1問(5)〜絶対値の付いた関数の定積分の計算

問題文全文(内容文):

$\boxed{1}$

(5)定積分$\displaystyle \int_{0}^{2} (x+1)\vert x-1 \vert dx$

の値は$\boxed{キ}$である。

$2025$年立教大学経済学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)定積分$\displaystyle \int_{0}^{2} (x+1)\vert x-1 \vert dx$

の値は$\boxed{キ}$である。

$2025$年立教大学経済学部過去問題
投稿日:2025.05.30

<関連動画>

福田の数学・入試問題解説〜東北大学2022年文系第2問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#不定積分・定積分#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数tの関数
$F(t)=\int_0^1|x^2-t^2|dx$
について考える。
(1)$0 \leqq t \leqq 1$のとき、$F(t)$をtの整式として表せ。
(2)$t \geqq 0$ のとき、F(t)を最小にするtの値TとF(T)の値を求めよ。

2022東北大学文系過去問
この動画を見る 

練習問題30 積分(y軸回転体) 数検 教採

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#その他#不定積分・定積分#数学検定#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=\log(x+1),y=3$
$y$軸で囲まれた部分を$y$軸を中心として
回転したときの体積$V$を求めよ.
この動画を見る 

【短時間でポイントチェック!!】定積分 1/6公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2\{(x+2)-x^2\}dx$
この動画を見る 

複素関数論⑫:複素積分の絶対値の評価(高専数学)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#複素数#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$C:z=z(t),a\leqq t\leqq b$とする.
$\vert \displaystyle \int_{c}^{} f(z)dz \vert\leqq \displaystyle \int_{a}^{b} \vert f(z(t)\dfrac{dz}{dt}\vert dt $
を示せ.
この動画を見る 

福田の数学〜千葉大学2023年第3問〜2次関数と定積分で表された関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)$p$を実数とする。曲線$y$=|$x^2$+$x$-2|と直線$y$=$x$+$p$ の共有点の個数を求めよ。
(2)等式$f(x)$=$x^2$+$\displaystyle\int_{-1}^2(xf(t)-t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る 
PAGE TOP