連立三元●次方程式 - 質問解決D.B.(データベース)

連立三元●次方程式

問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x+y}{xyz}=-\dfrac{1}{4} \\
\dfrac{y+z}{xyz}=-\dfrac{1}{24}\\
\dfrac{z+x}{xyz}=\dfrac{1}{24} \\
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x+y}{xyz}=-\dfrac{1}{4} \\
\dfrac{y+z}{xyz}=-\dfrac{1}{24}\\
\dfrac{z+x}{xyz}=\dfrac{1}{24} \\
\end{array}
\right.
\end{eqnarray}$
投稿日:2022.01.06

<関連動画>

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 

【少しでも上手く…!】連立方程式:昭和第一学園高等学校~全国入試問題解法

単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式を解きなさい。
3x+4y=27
2x+y=13
この動画を見る 

【テスト対策 中2】6章-4

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①当たりが3本入った5本のくじがある。
このくじを$A、B$の2人がこの順に1本ずつ引くとき
2人とも当たりを引く確率を求めなさい。
ただし、引いたくじは戻さないものとする。

◎当たりが4本入った10本のくじについて次の問いに答えなさい。
引いたくじは戻さないものとする。

②A君が同時に2本引くとき、2本ともはずれを引く確率を求めなさい。

③A君が同時に2本引き、そのあとにBさんが1本引くとき、
Bさんだけが当たりを引く確率を求めなさい。
この動画を見る 

【高校受験対策】数学-図形23

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形23

右の図において、$△ABC$は$AB=AC$の二等辺三角形であり、 点$D$、$E$はそれぞれ辺$AB$、$AC$の中点である。
また、点$F$は直線DE上の点であり、$EF=DE$である。 このとき次の問1、問2に答えなさい。

問1
$AF=BE$であることを証明しなさい。

問2
線分$BF$と線分$CE$との交点を$G$とする。
$△AEF$において辺AFを底辺とするときの高さを$x$、$△BGE$において辺$BE$を底辺とするときの高さを$y$とするとき、$x:y$を求めなさい。
この動画を見る 

高等学校入学試験予想問題:鳥取県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#平面図形#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $

(4)$ 2x^2+3x-1=0 $
$ x=? $

$ \boxed{2}$

$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?

$\boxed{3}$

$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
この動画を見る 
PAGE TOP