共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比 - 質問解決D.B.(データベース)

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比

問題文全文(内容文):
\begin{eqnarray}
{\large第1問}\\
[1] a,bを定数とするとき、xについての不等式\\
|ax-b-7| \lt 3 \cdots①\\
を考える。\\
(1)a=-3,b=-2とする。①を満たす整数全体の集合をPとする。\\
この集合Pを、要素を書き並べて表すと\\
P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}\\
となる。ただし、\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }の解答の順序は問わない。\\
\\
(2)a=\frac{1}{\sqrt2}とする。\\
(\textrm{i})b=1のとき、①を満たす整数は全部で\boxed{\ \ オ\ \ }個である。\\
(\textrm{ii})①を満たす整数が全部で(\boxed{\ \ オ\ \ }+1)個であるような正の整数b\\
のうち、最小のものは\boxed{\ \ カ\ \ }である。\\
\\
[2]平面上に2点A,Bがあり、AB=8である。直線AB上にない点Pをとり、\\
\triangle ABPをつくり、その外接円の半径をRとする。\\
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点P\\
をいろいろな位置に取った。\\
図1は、点Pをいろいろな位置にとったときの\triangleの外接円をかいたものである。\\
\\
(1)太郎さんは、点Pのとり方によって外接円の半径が異なることに気づき、\\
次の問題1を考えることにした。\\
\\
問題1:点Pをいろいろな位置にとるとき、外接円の半径Rが最小となる\\
\triangle ABPはどのような三角形か。\\
正弦定理により、2R=\frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}である。よって、\\
Rが最小となるのは\angle APB=\boxed{\ \ クケ\ \ }°の三角形である。\\
このとき、R=\boxed{\ \ コ\ \ }である。\\
\\
\\
(2)太郎さんは、図2(※動画参照)のように、問題1の点Pのとり方に\\
条件を付けて、次の問題2を考えた。\\
\\
問題2:直線ABに平行な直線をlとし、直線l上で点Pをいろいろな\\
位置にとる。このとき、外接円の半径Rが最小となる\triangle ABPは\\
どのような三角形か。\\
\\
太郎さんは、この問題を解決するために、次の構想を立てた。\\
\\
問題2の解決の構想\\
問題1の考察から、線分ABを直径とする円をCとし、円Cに着目\\
する。直線lは、その位置によって、円Cと共有点を持つ場合と\\
もたない場合があるので、それぞれの場合に分けて考える。\\
\\
直線ABと直線lとの距離をhとする。直線lが円Cと共有点を\\
持つ場合は、h \leqq \boxed{\ \ サ\ \ }のときであり、共有点をもたない場合は、\\
h \gt \boxed{\ \ サ\ \ }のときである。\\
\\
(\textrm{i})h \leqq \boxed{\ \ サ\ \ }のとき\\
直線lが円Cと共有点をもつので、Rが最小となる\triangle ABPは、\\
h \lt \boxed{\ \ サ\ \ }のとき\boxed{\boxed{\ \ シ\ \ }}であり、h=\boxed{\ \ サ\ \ }のとき直角二等辺三角形\\
である。\\
\\
(\textrm{ii})h \gt \boxed{\ \ サ\ \ }のとき\\
線分ABの垂直二等分線をmとし、直線mと直線lとの交点をP_1とする。\\
直線l上にあり点P_1とは異なる点をP_2とするとき\sin\angle AP_1B\\
と\sin\angle AP_2Bの大小を考える。\\
\triangle ABP_2の外接円と直線mとの共有点のうち、直線ABに関して点P_2\\
と同じ側にある点をP_3とすると、\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2Bである。\\
また、\angle AP_3B \lt \angle AP_1B \lt 90°より\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1Bである。\\
このとき(\triangle ABP_1の外接円の半径) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2の外接円の半径)\\
であり、Rが最小となる\triangle ABPは\boxed{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}については、最も適当なものを、次の⓪~④のうち\\
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
⓪鈍角三角形 ①直角三角形 ②正三角形 \\
③二等辺三角形 ④直角二等辺三角形 \\
\\
\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}の解答群(同じものを繰り返し選んでもよい。)\\
⓪\lt ①= ②\gt \\
\\
(3)問題2の考察を振り返って、h=8のとき、\triangle ABPの外接円の半径R\\
が最小である場合について考える。このとき、\sin\angle APB=\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\\
であり、R=\boxed{\ \ テ\ \ }である。
\end{eqnarray}
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large第1問}\\
[1] a,bを定数とするとき、xについての不等式\\
|ax-b-7| \lt 3 \cdots①\\
を考える。\\
(1)a=-3,b=-2とする。①を満たす整数全体の集合をPとする。\\
この集合Pを、要素を書き並べて表すと\\
P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}\\
となる。ただし、\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }の解答の順序は問わない。\\
\\
(2)a=\frac{1}{\sqrt2}とする。\\
(\textrm{i})b=1のとき、①を満たす整数は全部で\boxed{\ \ オ\ \ }個である。\\
(\textrm{ii})①を満たす整数が全部で(\boxed{\ \ オ\ \ }+1)個であるような正の整数b\\
のうち、最小のものは\boxed{\ \ カ\ \ }である。\\
\\
[2]平面上に2点A,Bがあり、AB=8である。直線AB上にない点Pをとり、\\
\triangle ABPをつくり、その外接円の半径をRとする。\\
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点P\\
をいろいろな位置に取った。\\
図1は、点Pをいろいろな位置にとったときの\triangleの外接円をかいたものである。\\
\\
(1)太郎さんは、点Pのとり方によって外接円の半径が異なることに気づき、\\
次の問題1を考えることにした。\\
\\
問題1:点Pをいろいろな位置にとるとき、外接円の半径Rが最小となる\\
\triangle ABPはどのような三角形か。\\
正弦定理により、2R=\frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}である。よって、\\
Rが最小となるのは\angle APB=\boxed{\ \ クケ\ \ }°の三角形である。\\
このとき、R=\boxed{\ \ コ\ \ }である。\\
\\
\\
(2)太郎さんは、図2(※動画参照)のように、問題1の点Pのとり方に\\
条件を付けて、次の問題2を考えた。\\
\\
問題2:直線ABに平行な直線をlとし、直線l上で点Pをいろいろな\\
位置にとる。このとき、外接円の半径Rが最小となる\triangle ABPは\\
どのような三角形か。\\
\\
太郎さんは、この問題を解決するために、次の構想を立てた。\\
\\
問題2の解決の構想\\
問題1の考察から、線分ABを直径とする円をCとし、円Cに着目\\
する。直線lは、その位置によって、円Cと共有点を持つ場合と\\
もたない場合があるので、それぞれの場合に分けて考える。\\
\\
直線ABと直線lとの距離をhとする。直線lが円Cと共有点を\\
持つ場合は、h \leqq \boxed{\ \ サ\ \ }のときであり、共有点をもたない場合は、\\
h \gt \boxed{\ \ サ\ \ }のときである。\\
\\
(\textrm{i})h \leqq \boxed{\ \ サ\ \ }のとき\\
直線lが円Cと共有点をもつので、Rが最小となる\triangle ABPは、\\
h \lt \boxed{\ \ サ\ \ }のとき\boxed{\boxed{\ \ シ\ \ }}であり、h=\boxed{\ \ サ\ \ }のとき直角二等辺三角形\\
である。\\
\\
(\textrm{ii})h \gt \boxed{\ \ サ\ \ }のとき\\
線分ABの垂直二等分線をmとし、直線mと直線lとの交点をP_1とする。\\
直線l上にあり点P_1とは異なる点をP_2とするとき\sin\angle AP_1B\\
と\sin\angle AP_2Bの大小を考える。\\
\triangle ABP_2の外接円と直線mとの共有点のうち、直線ABに関して点P_2\\
と同じ側にある点をP_3とすると、\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2Bである。\\
また、\angle AP_3B \lt \angle AP_1B \lt 90°より\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1Bである。\\
このとき(\triangle ABP_1の外接円の半径) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2の外接円の半径)\\
であり、Rが最小となる\triangle ABPは\boxed{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}については、最も適当なものを、次の⓪~④のうち\\
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
⓪鈍角三角形 ①直角三角形 ②正三角形 \\
③二等辺三角形 ④直角二等辺三角形 \\
\\
\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}の解答群(同じものを繰り返し選んでもよい。)\\
⓪\lt ①= ②\gt \\
\\
(3)問題2の考察を振り返って、h=8のとき、\triangle ABPの外接円の半径R\\
が最小である場合について考える。このとき、\sin\angle APB=\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\\
であり、R=\boxed{\ \ テ\ \ }である。
\end{eqnarray}
投稿日:2021.02.01

<関連動画>

【数Ⅰ】数と式:繁分数② 次の式を簡単にしよう。x³/{x-1/(x+1/x)}

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にしよう。
x³/{x-1/(x+1/x)}
この動画を見る 

【数Ⅰ】2次関数:関数決定その1! 頂点がわかっている場合

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
頂点が(1,-2)で、点(2,-3)を通る。
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (2)座標平面上の曲線x^2+2xy+2y^2=5をCとする。\hspace{100pt}\\
(\textrm{a})直線2x+y=t\ が曲線Cと共有点をもつとき、実数tの取り得る値の範囲は\hspace{18pt}\\
-\ \boxed{\ \ コ\ \ }\leqq t \leqq \boxed{\ \ サ\ \ }\ である。\hspace{158pt}\\
(\textrm{b})直線\ 2x+y=t\ が曲線Cとx \geqq 0の範囲で共有点を少なくとも1個もつとき、\hspace{7pt}\\
実数t\ の取り得る値の範囲は-\frac{1}{2}\sqrt{\boxed{\ \ シス\ \ }} \leqq t \leqq \boxed{\ \ セ\ \ }\ である。\hspace{58pt}
\end{eqnarray}
この動画を見る 

大学ではなく高校入試。2種類の解法

アイキャッチ画像
単元: #計算と数の性質#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$2^{ 56 }$と$5^{ 24 }$どっちが大きい?
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、\\
後のように話している。\\
\\
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。\\
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、\\
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした\\
垂線とその水平面との交点のことだよ。\\
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、\\
三角比の表を用いて調べたら16°だったよ。\\
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい\\
のかな?\\
\\
図1の\thetaはちょうど16°であったとする。しかし、図1の縮尺は、水平方向が\frac{1}{100000}\\
であるのに対して鉛直方向は\frac{1}{25000}であった。\\
実際にキャンプ場の地点Aから山頂Bを見上げる角である\angle BACを考えると、\\
\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }である。\\
\\
したがって、\angle BACの大きさは\boxed{\ \ セ\ \ }、ただし、目の高さは無視して考えるものとする。\\
\\
\boxed{\ \ セ\ \ }の解答群\\
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい\\
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である\\
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である\\
⑨64°より大きく65°より小さい
\end{eqnarray}
この動画を見る 
PAGE TOP