整数問題 大阪府 - 質問解決D.B.(データベース)

整数問題 大阪府

問題文全文(内容文):
・2020-nの値は93の倍数
・n-780の値は素数
自然数n=?

2020大阪府
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
・2020-nの値は93の倍数
・n-780の値は素数
自然数n=?

2020大阪府
投稿日:2023.12.28

<関連動画>

整数問題 あれを使えばスッキリ解決

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
aとbが互いに素なら
abと$a^{2}-b^{2}$も互いに素であることを証明せよ
この動画を見る 

明治学院大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{10^{130}}{13}$の小数第一位を求めよ.

2021明治学院大過去問
この動画を見る 

中学生向け整数問題その2

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
この動画を見る 

一橋大(1)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.

1991一橋大過去問
この動画を見る 

ただの分数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
この動画を見る 
PAGE TOP