気付けば一瞬です。 星稜 - 質問解決D.B.(データベース)

気付けば一瞬です。  星稜

問題文全文(内容文):
$\angle x = ?$
*図は動画内参照

星稜高等学校
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x = ?$
*図は動画内参照

星稜高等学校
投稿日:2022.08.07

<関連動画>

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 

連立方程式だけど。。 筑波大附属

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = \sqrt 3 \\
x - 2y = 1
\end{array}
\right.
\end{eqnarray}
$
$x^2+2y^2 =?$

筑波大学付属高等学校
この動画を見る 

中2数学「直角三角形の合同条件」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題
次の図で,合同な直角三角形の組を見つけ,記号$\equiv $を使って表しなさい.
また,そのときに使った直角三角形の合同条件を答えなさい.
この動画を見る 

【理解深まる3分間】連立方程式:青森県高等学校~全国入試問題解法【トライ式】

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#青森県公立高等学校#青森県高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 青森県の高等学校

グラフを利用して解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
y = x+6 \\
x + 2y = 6
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校受験対策】数学-死守25

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#文章題#文章題その他#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-4-8$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{3}{7}$を計算しなさい.

③$\sqrt{50}-\sqrt{32}$を計算しなさい.

④2次方程式$x^ 2 - 5x + 2 = 0$を解きなさい.

⑤図1のように,四角形$ABCD$の3つの頂点における外角が
わかっているとき,$\angle x$の大きさを求めなさい.

⑥図2のような半径$6cm$の半球の表面積と体積を求めなさい.
ただし,円周率は$\pi$とする.

⑦右の表は,あるクラスの1日の家庭での学習時間を
度数分布表にまとめたものである.
この表から$\Box$にあてはまる数と最頻値(モード) を求めなさい.

⑧ある家庭では,昨年1月の電気代と水道代の1日当たりの合計額は530円だった.
その後,家族で節電・節水を心がけたため,今年1月の1日当たりの額は,
昨年1月と比較して電気代は15%,水道代は10%減り,
1日当たりの合計額は460円となった.
昨年1月の1日当たりの電気代と水道代はそれぞれ何円か,求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP