問題文全文(内容文):
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。
①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$
②$2\cos\theta+1=0$
③$\sqrt{ 3 } \tan \theta=1$
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。
①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$
②$2\cos\theta+1=0$
③$\sqrt{ 3 } \tan \theta=1$
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。
①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$
②$2\cos\theta+1=0$
③$\sqrt{ 3 } \tan \theta=1$
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。
①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$
②$2\cos\theta+1=0$
③$\sqrt{ 3 } \tan \theta=1$
投稿日:2015.08.16